当前位置:
X-MOL 学术
›
Adv. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Robust and Versatile Biodegradable Unclonable Anti-Counterfeiting Labels with Multi-Mode Optical Encoding Using Protein-Mediated Luminescent Calcite Signatures
Advanced Materials ( IF 27.4 ) Pub Date : 2024-12-02 , DOI: 10.1002/adma.202409170 Ziting Wang, Meng Li, Yinghao Fu, Yu Wang, Yanqing Lu
Advanced Materials ( IF 27.4 ) Pub Date : 2024-12-02 , DOI: 10.1002/adma.202409170 Ziting Wang, Meng Li, Yinghao Fu, Yu Wang, Yanqing Lu
Physical unclonable functions (PUFs) are emerging as a cutting-edge technology for enhancing information security by providing robust security authentication and non-reproducible cryptographic keys. Incorporating renewable and biocompatible materials into PUFs ensures safety for handling, compatibility with biological systems, and reduced environmental impact. However, existing PUF platforms struggle to balance high encoding capacity, diversified encryption signatures, and versatile functionalities with sustainability and biocompatibility. Here, all-biomaterial-based unclonable anti-counterfeiting labels featuring multi-mode encoding, multi-level cryptographic keys, and multiple authentication operations are developed by imprinting biomimetic-grown calcites on versatile silk protein films. In this label, the inherent non-clonability comes from the randomized characteristics of calcites, mediated by silk protein during crystal growth. The successful embedding of photoluminescent molecules into calcite lattices, assisted by silk protein, allows the resulting platform to utilize fluorescence patterns alongside birefringence for high-capacity encoding. This design facilitates easy and rapid authentication through Hamming distance and convolutional neural networks using standard cameras and portable microscopes. Moreover, angle-dependent polarization patterns enable multi-level key generation, while multi-spectral fluorescence signals offer multi-channel keys. The developed anti-counterfeiting labels combine biodegradability, green manufacture, easy authentication, high-level complexity, low cost, robustness, patternability, and versatility, offering a practical and high-security solution to combat counterfeiting across various applications.
中文翻译:
坚固耐用、用途广泛的可生物降解不可克隆防伪标签,采用蛋白质介导的发光方解石特征进行多模式光学编码
物理不可克隆功能 (PUF) 正在成为一种尖端技术,通过提供强大的安全身份验证和不可复制的加密密钥来增强信息安全。将可再生和生物相容性材料纳入 PUF 可确保处理安全、与生物系统的兼容性并减少对环境的影响。然而,现有的 PUF 平台难以在高编码容量、多样化的加密签名和多功能功能与可持续性和生物相容性之间取得平衡。在这里,通过将仿生生长的方解石压印在多功能丝绸蛋白薄膜上,开发了具有多模式编码、多级加密密钥和多重身份验证操作的全生物材料不可克隆防伪标签。在这个标记中,固有的非克隆性来自方解石的随机特性,由晶体生长过程中的丝蛋白介导。在丝蛋白的辅助下,光致发光分子成功嵌入方解石晶格中,使所得平台能够利用荧光图案和双折射进行高容量编码。这种设计有助于使用标准相机和便携式显微镜通过汉明距离和卷积神经网络轻松快速地进行身份验证。此外,与角度相关的偏振模式支持多级键生成,而多光谱荧光信号则提供多通道键。开发的防伪标签结合了生物降解性、绿色制造、易于认证、高复杂性、低成本、稳健性、可图案化和多功能性,为打击各种应用中的假冒行为提供了实用且高安全性的解决方案。
更新日期:2024-12-03
中文翻译:
坚固耐用、用途广泛的可生物降解不可克隆防伪标签,采用蛋白质介导的发光方解石特征进行多模式光学编码
物理不可克隆功能 (PUF) 正在成为一种尖端技术,通过提供强大的安全身份验证和不可复制的加密密钥来增强信息安全。将可再生和生物相容性材料纳入 PUF 可确保处理安全、与生物系统的兼容性并减少对环境的影响。然而,现有的 PUF 平台难以在高编码容量、多样化的加密签名和多功能功能与可持续性和生物相容性之间取得平衡。在这里,通过将仿生生长的方解石压印在多功能丝绸蛋白薄膜上,开发了具有多模式编码、多级加密密钥和多重身份验证操作的全生物材料不可克隆防伪标签。在这个标记中,固有的非克隆性来自方解石的随机特性,由晶体生长过程中的丝蛋白介导。在丝蛋白的辅助下,光致发光分子成功嵌入方解石晶格中,使所得平台能够利用荧光图案和双折射进行高容量编码。这种设计有助于使用标准相机和便携式显微镜通过汉明距离和卷积神经网络轻松快速地进行身份验证。此外,与角度相关的偏振模式支持多级键生成,而多光谱荧光信号则提供多通道键。开发的防伪标签结合了生物降解性、绿色制造、易于认证、高复杂性、低成本、稳健性、可图案化和多功能性,为打击各种应用中的假冒行为提供了实用且高安全性的解决方案。