当前位置:
X-MOL 学术
›
Adv. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Superior Capacitive Energy Storage Enabled by Molecularly Interpenetrating Interfaces in Layered Polymers
Advanced Materials ( IF 27.4 ) Pub Date : 2024-12-03 , DOI: 10.1002/adma.202412561 Liang Sun, Fengyuan Zhang, Li Li, Jiajie Liang, Jiufeng Dong, Zizhao Pan, Yujuan Niu, Jiaxin Chen, Yuqi Liu, Yani Lu, Kai Wu, Qi Li, Jiangyu Li, Qing Wang, Hong Wang
Advanced Materials ( IF 27.4 ) Pub Date : 2024-12-03 , DOI: 10.1002/adma.202412561 Liang Sun, Fengyuan Zhang, Li Li, Jiajie Liang, Jiufeng Dong, Zizhao Pan, Yujuan Niu, Jiaxin Chen, Yuqi Liu, Yani Lu, Kai Wu, Qi Li, Jiangyu Li, Qing Wang, Hong Wang
Polymer dielectrics are essential for advanced electronics and electrical power systems, yet they suffer from low energy density (U e ) due to their low dielectric constant (K ) and the inverse relationship between K and breakdown stength (E b ). Here a scalable approach utilizing the designed molecularly interpenetrating interfaces is presented to achieve all‐organic dielectric polymers with high U e and charge–dischage efficiency (η ). Distinctive intermolecular interactions and microstructural changes, as demonstrated experimentally and theoretically, are introduced by the molecularly interpenetrating interfaces, resulting in simultaneous improvements in dielectric responses and mechanical strength while inhibiting electrical conduction – outcomes unattainable in conventional layered polymers. Consequently, exceptional improvments in both K and E b are achieved, yielding a very high U e of 22.89 J cm−3 with η ≥ 90%, outperforming current layered polymer dielectrics. The bilayers can be easily fabricated into large‐area films with high uniformity and outstanding capacitive stability (>500 000 cycles), offering a practical route to scalable high‐U e polymer dielectrics for electrical energy storage.
中文翻译:
通过层状聚合物中的分子互穿界面实现卓越的电容储能
聚合物电介质对于先进的电子和电力系统至关重要,但由于它们的介电常数 (K) 低以及 K 与击穿强度 (Eb) 之间的反比关系,它们的能量密度 (Ue) 较低。这里提出了一种利用设计的分子互穿界面的可扩展方法,以实现具有高 Ue 和电荷-分离效率 (η) 的全有机介电聚合物。正如实验和理论所证明的那样,分子互穿界面引入了独特的分子间相互作用和微观结构变化,从而同时改善介电响应和机械强度,同时抑制导电——这是传统层状聚合物无法实现的结果。因此,在 K 和 Eb 中都实现了出色的改进,产生了 22.89 J cm-3 的非常高的 Ue,η ≥ 90%,优于目前的分层聚合物电介质。双层可以很容易地制成具有高均匀性和出色电容稳定性(x3E500 000 次循环)的大面积薄膜,为用于电能存储的可扩展高 Ue 聚合物电介质提供了一条实用的途径。
更新日期:2024-12-03
中文翻译:
通过层状聚合物中的分子互穿界面实现卓越的电容储能
聚合物电介质对于先进的电子和电力系统至关重要,但由于它们的介电常数 (K) 低以及 K 与击穿强度 (Eb) 之间的反比关系,它们的能量密度 (Ue) 较低。这里提出了一种利用设计的分子互穿界面的可扩展方法,以实现具有高 Ue 和电荷-分离效率 (η) 的全有机介电聚合物。正如实验和理论所证明的那样,分子互穿界面引入了独特的分子间相互作用和微观结构变化,从而同时改善介电响应和机械强度,同时抑制导电——这是传统层状聚合物无法实现的结果。因此,在 K 和 Eb 中都实现了出色的改进,产生了 22.89 J cm-3 的非常高的 Ue,η ≥ 90%,优于目前的分层聚合物电介质。双层可以很容易地制成具有高均匀性和出色电容稳定性(x3E500 000 次循环)的大面积薄膜,为用于电能存储的可扩展高 Ue 聚合物电介质提供了一条实用的途径。