Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Fast ionic conduction achieved through the design and synthesis of ceramic heterointerfaces
Joule ( IF 38.6 ) Pub Date : 2024-12-03 , DOI: 10.1016/j.joule.2024.11.006 Shingo Ohta, Nikhilendra Singh, Rajeev Kumar Rai, Hyeongjun Koh, Yihui Zhang, Wonjoon Suk, Max J. Palmer, Son-Jong Hwang, Michael Jones, Chuhong Wang, Chen Ling, Kimber Stamm Masias, Eli Stavitski, Jeff Sakamoto, Eric A. Stach
Joule ( IF 38.6 ) Pub Date : 2024-12-03 , DOI: 10.1016/j.joule.2024.11.006 Shingo Ohta, Nikhilendra Singh, Rajeev Kumar Rai, Hyeongjun Koh, Yihui Zhang, Wonjoon Suk, Max J. Palmer, Son-Jong Hwang, Michael Jones, Chuhong Wang, Chen Ling, Kimber Stamm Masias, Eli Stavitski, Jeff Sakamoto, Eric A. Stach
Lithium (Li) chloride and iron oxychloride (FeOCl), typically nonconductive, were combined to form a [Li1+δCl]δ+/[FeOCl]δ− heterointerface composite material (LFH), achieving ionic conductivities of >1 mS cm−1. Analysis techniques (scanning transmission electron microscopy [STEM] and electron energy-loss spectroscopy [EELS]) indicated that the microstructure of LFH consisted of an amorphous LiCl-based shell surrounding a crystalline FeOCl-based core. Electrochemical measurements alongside solid-state 6,7Li nuclear magnetic resonance (NMR) and molecular dynamic simulations revealed Li+ as the sole conductive species, with a diffusion barrier of ∼0.25 eV. X-ray photoelectron spectroscopy (XPS) and X-ray absorption fine structure (XAFS) results further supported interstitial Li+ diffusion at the heterointerface and within the LiCl phase, made possible by the heterointerface. Despite susceptibility to electronic conductivity, iron’s defects and multivalency (Fe³⁺, Fe²⁺) enable the Fe–O–Cl framework to accept Cl−, facilitating Li⁺ ionic conduction. A prototype solid-state cell (showing 97% Coulombic efficiency) demonstrated the viability of this heterointerface design for applications in energy storage.
中文翻译:
通过设计和合成陶瓷异质界面实现快速离子传导
氯化锂 (Li) 和氯铁 (FeOCl),通常是不导电的,结合形成 [Li1+δCl]δ+/[FeOCl]δ− 异质界面复合材料 (LFH),实现 >1 mS cm−1 的离子电导率。分析技术(扫描透射电子显微镜 [STEM] 和电子能量损失光谱 [EELS])表明,LFH 的微观结构由围绕结晶 FeOCl 基核心的非晶态 LiCl 基壳组成。电化学测量以及固态 6,7Li 核磁共振 (NMR) 和分子动力学模拟显示 Li+ 是唯一的导电物质,扩散势垒为 ∼0.25 eV。X 射线光电子能谱 (XPS) 和 X 射线吸收精细结构 (XAFS) 结果进一步支持了异质界面和 LiCl 相内的间隙 Li+ 扩散,这由异质界面实现。尽管对电子导电性敏感,但铁的缺陷和多价性(Fe³⁺、Fe²⁺)使 Fe-O-Cl 框架能够接受 Cl−,从而促进 Li⁺ 离子传导。原型固态电池(显示 97% 的库仑效率)证明了这种异质界面设计在储能应用中的可行性。
更新日期:2024-12-03
中文翻译:
通过设计和合成陶瓷异质界面实现快速离子传导
氯化锂 (Li) 和氯铁 (FeOCl),通常是不导电的,结合形成 [Li1+δCl]δ+/[FeOCl]δ− 异质界面复合材料 (LFH),实现 >1 mS cm−1 的离子电导率。分析技术(扫描透射电子显微镜 [STEM] 和电子能量损失光谱 [EELS])表明,LFH 的微观结构由围绕结晶 FeOCl 基核心的非晶态 LiCl 基壳组成。电化学测量以及固态 6,7Li 核磁共振 (NMR) 和分子动力学模拟显示 Li+ 是唯一的导电物质,扩散势垒为 ∼0.25 eV。X 射线光电子能谱 (XPS) 和 X 射线吸收精细结构 (XAFS) 结果进一步支持了异质界面和 LiCl 相内的间隙 Li+ 扩散,这由异质界面实现。尽管对电子导电性敏感,但铁的缺陷和多价性(Fe³⁺、Fe²⁺)使 Fe-O-Cl 框架能够接受 Cl−,从而促进 Li⁺ 离子传导。原型固态电池(显示 97% 的库仑效率)证明了这种异质界面设计在储能应用中的可行性。