当前位置:
X-MOL 学术
›
Energy Environ. Sci.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Advancing extreme-temperature-tolerant zinc–air batteries through photothermal transition metal sulfide heterostructures
Energy & Environmental Science ( IF 32.4 ) Pub Date : 2024-12-03 , DOI: 10.1039/d4ee03240c Yuqing Zhong, Yunzheng Zhang, Jiajian Wang, Huile Jin, Shuang Pan, Shun Wang, Yihuang Chen
Energy & Environmental Science ( IF 32.4 ) Pub Date : 2024-12-03 , DOI: 10.1039/d4ee03240c Yuqing Zhong, Yunzheng Zhang, Jiajian Wang, Huile Jin, Shuang Pan, Shun Wang, Yihuang Chen
The development of cost-effective, high-performance bifunctional oxygen catalysts shows significant potential for the commercialization of zinc–air batteries (ZABs). In this study, photothermal electrocatalysts consisting of NiCo2S4@NiFe layered double hydroxides on a graphene oxide (NiCo2S4@NiFe LDH/N-rGO) were crafted. The NiCo2S4@NiFe LDH/N-rGO electrocatalyst displayed remarkable bifunctional activity with an impressive ΔE value of 0.636 V under the influence of photothermal effects, far exceeding most advanced systems (generally >0.68 V). At a high current density of 25 mA cm−2, the NiCo2S4@NiFe LDH/N-rGO-based ZAB exhibited an impressive cycling performance, reaching 3410 cycles and extending further to an extraordinary 8285 cycles under illumination conditions. Moreover, when considering flexible all-solid-state ZABs, photothermally-assisted rechargeable batteries displayed outstanding attributes, including exceptional maximum power density (e.g., 151.7 mW cm−2 at 25 °C), remarkable cycle stability (e.g., over 3480 cycles at −40 °C), and remarkable flexibility, spanning from high temperature (60 °C) to extremely low temperature (−40 °C). Through operando Raman and simulation investigation, it was revealed that the photothermal effect facilitates the generation of oxyhydroxide, underscoring the beneficial impact of light on the electrocatalysis.
中文翻译:
通过光热过渡金属硫化物异质结构推进耐极端温度的锌-空气电池
经济高效、高性能双功能氧催化剂的开发显示出锌-空气电池 (ZAB) 商业化的巨大潜力。在这项研究中,制备了由氧化石墨烯 (NiCo2S4@NiFe LDH/N-rGO) 上的 NiCo2S4@NiFe 层状双氢氧化物组成的光热电催化剂。NiCo2S4@NiFe LDH/N-rGO 电催化剂表现出显著的双功能活性,在光热效应的影响下,ΔE 值为 0.636 V,远超大多数先进系统(通常为 >0.68 V)。在 25 mA cm-2 的高电流密度下,基于 NiCo2S4@NiFe LDH/N-rGO 的 ZAB 表现出令人印象深刻的循环性能,达到 3410 次循环,并在照明条件下进一步扩展到非凡的 8285 次循环。此外,当考虑柔性全固态 ZAB 时,光热辅助可充电电池表现出出色的特性,包括出色的最大功率密度(例如,25 °C 时为 151.7 mW cm-2)、卓越的循环稳定性(例如,在 -40 °C 下超过 3480 次循环)和卓越的柔韧性,从高温 (60 °C) 到极低温度 (-40 °C)。通过原位拉曼和模拟研究,揭示了光热效应促进了羟基氧化物的产生,强调了光对电催化的有益影响。
更新日期:2024-12-03
中文翻译:
通过光热过渡金属硫化物异质结构推进耐极端温度的锌-空气电池
经济高效、高性能双功能氧催化剂的开发显示出锌-空气电池 (ZAB) 商业化的巨大潜力。在这项研究中,制备了由氧化石墨烯 (NiCo2S4@NiFe LDH/N-rGO) 上的 NiCo2S4@NiFe 层状双氢氧化物组成的光热电催化剂。NiCo2S4@NiFe LDH/N-rGO 电催化剂表现出显著的双功能活性,在光热效应的影响下,ΔE 值为 0.636 V,远超大多数先进系统(通常为 >0.68 V)。在 25 mA cm-2 的高电流密度下,基于 NiCo2S4@NiFe LDH/N-rGO 的 ZAB 表现出令人印象深刻的循环性能,达到 3410 次循环,并在照明条件下进一步扩展到非凡的 8285 次循环。此外,当考虑柔性全固态 ZAB 时,光热辅助可充电电池表现出出色的特性,包括出色的最大功率密度(例如,25 °C 时为 151.7 mW cm-2)、卓越的循环稳定性(例如,在 -40 °C 下超过 3480 次循环)和卓越的柔韧性,从高温 (60 °C) 到极低温度 (-40 °C)。通过原位拉曼和模拟研究,揭示了光热效应促进了羟基氧化物的产生,强调了光对电催化的有益影响。