当前位置: X-MOL 学术Energy Environ. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
High thermoelectric conversion through an optimal contribution of electronic carriers in polymeric mixed ionic–electronic conducting films
Energy & Environmental Science ( IF 32.4 ) Pub Date : 2024-12-02 , DOI: 10.1039/d4ee03185g
Cheolhyun Cho, Byeonggwan Kim, Sienoh Park, Eunkyoung Kim

The optimal contribution of electronic carriers in polymeric mixed ionic–electronic conducting (MIEC) films was explored to achieve high thermoelectric (TE) conversion at a low temperature gradient (ΔT) using poly(2-acrylamido-2-methyl-1-propanesulfonic acid) (P), potassium ferricyanide (F), and well-dispersed graphene flakes (G). In this composite (PFG) film, the active carriers were identified as CN and electrons. The sulfonate groups in P effectively dispersed the graphene flakes into nanoscale electronic channels, while P and F provided ionic channels for CN transport. By systematically varying the G content and humidity, a series of MIECs with broad electronic (σe) and ionic (σi) conductivity ranges were developed. Among these, the PFG film containing 3 wt% G (PFG3) exhibited a remarkable total Seebeck coefficient (S) of over −40 mV K−1 under conditions of a ΔT of 5.3 K, 80% RH and room temperature. Additionally, PFG3 demonstrated a stable voltage output (Vout) even after 3000 s. From the residual Vout, the electronic Seebeck coefficient (Se) was determined to be −990 μV K−1, the highest value reported for polymeric TE films. The simultaneous enhancement of Se and S in the same film indicated an optimized balance of electronic and ionic carrier contributions, further confirmed by the transference numbers and the conductivity ratio (σe/σi). The power density (PD) of the PFGs was also found to depend on σe/σi, underscoring the importance of controlling carrier contributions. Despite its MIEC nature, PFG3 efficiently transported electronic carriers through G channels, and the relationship of Se vs. σe aligned with a degenerate electronic model for PFGs. Scaling up the PFG3 film into a TE module yielded an energy density of 36.0 J m−2 and a PD of 18.6 mW m−2 for a ΔT of 4.9 K. The practical potential of the PFG system was demonstrated by successfully powering a diode for an extended period using TE energy harvesting and light-triggered photo-TE systems, highlighting the versatility and promise of this material for low-grade thermal energy applications.

中文翻译:


通过聚合物混合离子-电子导电薄膜中电子载流子的最佳贡献实现高热电转化率



使用聚(2-丙烯酰胺基-2-甲基-1-丙磺酸)(P)、铁氰化钾 (F) 和分散良好的石墨烯片 (G),探索了电子载体在聚合物混合离子-电子导电 (MIEC) 薄膜中的最佳贡献,以实现低温梯度 (ΔT) 下的高热电 (TE) 转换。在该复合 (PFG) 薄膜中,活性载流子被鉴定为 CN 和电子。P 中的磺酸盐基团有效地将石墨烯薄片分散到纳米级电子通道中,而 P 和 F 为 CN 传输提供离子通道。通过系统地改变 G 含量和湿度,开发了一系列具有宽电子 (σe) 和离子 (σ) 电导率范围的 MIEC。其中,在 5.3 K 的 ΔT、80% RH 和室温的条件下,含有 3 wt% G (PFG3) 的 PFG 薄膜表现出超过 -40 mV K-1 的显着总塞贝克系数 (S)。此外,PFG3 在 3000 秒后仍表现出稳定的电压输出 (Vout)。从残差 V输出,电子塞贝克系数 (Se) 确定为 -990 μV K-1,这是聚合物 TE 薄膜报道的最高值。在同一薄膜中 SeS 的同步增强表明电子和离子载流子贡献的平衡得到优化,转移数和电导率比 (σe/σ) 进一步证实了这一点。 还发现 PFG 的功率密度 (PD) 取决于 σe/σ,强调了控制载波贡献的重要性。尽管具有 MIEC 性质,但 PFG3 通过 G 通道有效地传输电子载流子,并且 Se与 σe 的关系与 PFG 的简并电子模型一致。将 PFG3 薄膜放大到 TE 模块中,对于 ΔT,能量密度为 36.0 J m-2 和 18.6 mW m-2 的 PD的 4.9 K。通过使用 TE 能量收集和光触发光 TE 系统成功地为二极管长时间供电,证明了 PFG 系统的实用潜力,突出了这种材料在低品位热能应用中的多功能性和前景。
更新日期:2024-12-02
down
wechat
bug