当前位置:
X-MOL 学术
›
Chem. Rev.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Utilization of Electric Fields to Modulate Molecular Activities on the Nanoscale: From Physical Properties to Chemical Reactions
Chemical Reviews ( IF 51.4 ) Pub Date : 2024-12-02 , DOI: 10.1021/acs.chemrev.4c00327 Chen Yang, Yilin Guo, Heng Zhang, Xuefeng Guo
Chemical Reviews ( IF 51.4 ) Pub Date : 2024-12-02 , DOI: 10.1021/acs.chemrev.4c00327 Chen Yang, Yilin Guo, Heng Zhang, Xuefeng Guo
As a primary energy source, electricity drives broad fields from everyday electronic circuits to industrial chemical catalysis. From a chemistry viewpoint, studying electric field effects on chemical reactivity is highly important for revealing the intrinsic mechanisms of molecular behaviors and mastering chemical reactions. Recently, manipulating the molecular activity using electric fields has emerged as a new research field. In addition, because integration of molecules into electronic devices has the natural complementary metal-oxide-semiconductor compatibility, electric field-driven molecular devices meet the requirements for both electronic device miniaturization and precise regulation of chemical reactions. This Review provides a timely and comprehensive overview of recent state-of-the-art advances, including theoretical models and prototype devices for electric field-based manipulation of molecular activities. First, we summarize the main approaches to providing electric fields for molecules. Then, we introduce several methods to measure their strengths in different systems quantitatively. Subsequently, we provide detailed discussions of electric field-regulated photophysics, electron transport, molecular movements, and chemical reactions. This review intends to provide a technical manual for precise molecular control in devices via electric fields. This could lead to development of new optoelectronic functions, more efficient logic processing units, more precise bond-selective control, new catalytic paradigms, and new chemical reactions.
中文翻译:
利用电场调节纳米尺度上的分子活动:从物理性质到化学反应
作为一种主要能源,电力推动了从日常电子电路到工业化学催化的广泛领域。从化学的角度来看,研究电场对化学反应性的影响对于揭示分子行为的内在机制和掌握化学反应非常重要。最近,利用电场操纵分子活性已成为一个新的研究领域。此外,由于将分子集成到电子设备中具有天然互补的金属氧化物半导体兼容性,因此电场驱动的分子器件既满足了电子设备小型化的要求,也满足了化学反应的精确调节要求。本综述及时全面地概述了最近的最新进展,包括基于电场操纵分子活动的理论模型和原型设备。首先,我们总结了为分子提供电场的主要方法。然后,我们介绍了几种定量测量它们在不同系统中的优势的方法。随后,我们详细讨论了电场调节的光物理学、电子传输、分子运动和化学反应。本综述旨在为通过电场对器件进行精确分子控制提供技术手册。这可能会导致新的光电功能的发展、更高效的逻辑处理单元、更精确的键选择性控制、新的催化范式和新的化学反应。
更新日期:2024-12-03
中文翻译:
利用电场调节纳米尺度上的分子活动:从物理性质到化学反应
作为一种主要能源,电力推动了从日常电子电路到工业化学催化的广泛领域。从化学的角度来看,研究电场对化学反应性的影响对于揭示分子行为的内在机制和掌握化学反应非常重要。最近,利用电场操纵分子活性已成为一个新的研究领域。此外,由于将分子集成到电子设备中具有天然互补的金属氧化物半导体兼容性,因此电场驱动的分子器件既满足了电子设备小型化的要求,也满足了化学反应的精确调节要求。本综述及时全面地概述了最近的最新进展,包括基于电场操纵分子活动的理论模型和原型设备。首先,我们总结了为分子提供电场的主要方法。然后,我们介绍了几种定量测量它们在不同系统中的优势的方法。随后,我们详细讨论了电场调节的光物理学、电子传输、分子运动和化学反应。本综述旨在为通过电场对器件进行精确分子控制提供技术手册。这可能会导致新的光电功能的发展、更高效的逻辑处理单元、更精确的键选择性控制、新的催化范式和新的化学反应。