Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Systematic probing of protein adsorption on protein-based nanoparticles in dependence of the particle surface charge
Nanoscale ( IF 5.8 ) Pub Date : 2024-12-03 , DOI: 10.1039/d4nr04069d Ben Otange, Tobias Katenkamp, Hendrik Böhler, Michael Rütten, Laurin Lang, Florian Schulz, Wolfgang J. Parak, Tobias Beck
Nanoscale ( IF 5.8 ) Pub Date : 2024-12-03 , DOI: 10.1039/d4nr04069d Ben Otange, Tobias Katenkamp, Hendrik Böhler, Michael Rütten, Laurin Lang, Florian Schulz, Wolfgang J. Parak, Tobias Beck
Understanding protein adsorption on the surface of nanoparticles (NPs) is crucial for determining their behavior in biological environments. Early research in this field faced challenges in producing high-quality NPs. Advancements in NP fabrication now allow for precise modifications of specific parameters, such as zeta potential. However, creating a series of NPs where only one parameter, such as surface charge, is independently varied remains challenging due to concurrent alterations in other properties. In this study, we address these challenges using the ferritin nanocage (Ftn) as a model system for NPs. By modifying only a few amino acids on the outer surface of Ftn, we produce NPs with highly defined properties, focusing solely on variations in surface charge. This approach enables us to generate a controlled series of protein-based nanocages, labeled with fluorophores inside the nanocage. We utilize fluorescent correlation spectroscopy (FCS) to investigate the adsorption of bovine serum albumin (BSA) on these NPs, analyzing the dependence of BSA binding on surface charge. This fundamental study enhances our understanding of the driving forces behind protein adsorption, contributing valuable insights into the design of NPs for biomedical applications.
中文翻译:
根据颗粒表面电荷系统探测蛋白质对蛋白质纳米颗粒的吸附
了解纳米颗粒 (NPs) 表面的蛋白质吸附对于确定它们在生物环境中的行为至关重要。该领域的早期研究在生产高质量 NP 方面面临挑战。NP 制造的进步现在允许对特定参数进行精确修改,例如 zeta 电位。然而,由于其他特性的并发改变,创建一系列只有一个参数(例如表面电荷)独立变化的 NP 仍然具有挑战性。在这项研究中,我们使用铁蛋白纳米笼 (Ftn) 作为 NPs 的模型系统来应对这些挑战。通过仅修饰 Ftn 外表面的少数氨基酸,我们生产出具有高度明确特性的 NP,仅关注表面电荷的变化。这种方法使我们能够生成一系列受控的基于蛋白质的纳米笼,这些纳米笼内用荧光团标记。我们利用荧光相关光谱 (FCS) 来研究牛血清白蛋白 (BSA) 对这些 NP 的吸附,分析 BSA 结合对表面电荷的依赖性。这项基础研究增强了我们对蛋白质吸附驱动力的理解,为生物医学应用的 NP 设计提供了有价值的见解。
更新日期:2024-12-06
中文翻译:
根据颗粒表面电荷系统探测蛋白质对蛋白质纳米颗粒的吸附
了解纳米颗粒 (NPs) 表面的蛋白质吸附对于确定它们在生物环境中的行为至关重要。该领域的早期研究在生产高质量 NP 方面面临挑战。NP 制造的进步现在允许对特定参数进行精确修改,例如 zeta 电位。然而,由于其他特性的并发改变,创建一系列只有一个参数(例如表面电荷)独立变化的 NP 仍然具有挑战性。在这项研究中,我们使用铁蛋白纳米笼 (Ftn) 作为 NPs 的模型系统来应对这些挑战。通过仅修饰 Ftn 外表面的少数氨基酸,我们生产出具有高度明确特性的 NP,仅关注表面电荷的变化。这种方法使我们能够生成一系列受控的基于蛋白质的纳米笼,这些纳米笼内用荧光团标记。我们利用荧光相关光谱 (FCS) 来研究牛血清白蛋白 (BSA) 对这些 NP 的吸附,分析 BSA 结合对表面电荷的依赖性。这项基础研究增强了我们对蛋白质吸附驱动力的理解,为生物医学应用的 NP 设计提供了有价值的见解。