当前位置:
X-MOL 学术
›
Energy Convers. Manag.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Optimization and comparative analysis of various organic Rankine cycle-based integrated systems for cooling and power cogeneration utilizing waste heat
Energy Conversion and Management ( IF 9.9 ) Pub Date : 2024-12-02 , DOI: 10.1016/j.enconman.2024.119328 Xiaojing Sun, Linlin Liu, Tong Zhang, Yao Zhao, Yanjun Dai
Energy Conversion and Management ( IF 9.9 ) Pub Date : 2024-12-02 , DOI: 10.1016/j.enconman.2024.119328 Xiaojing Sun, Linlin Liu, Tong Zhang, Yao Zhao, Yanjun Dai
Waste heat recovery is crucial for reducing energy consumption and carbon emissions. The integration of organic Rankine cycle with absorption refrigeration, vapor compression refrigeration, and compression-absorption cascade refrigeration enables efficient cooling and power cogeneration from waste heat. However, existing studies lack a unified optimization method, a systematic comparison framework, and thorough application scenarios analysis. Herein, a comprehensive integrated system incorporating operational modes of organic Rankine cycle with these refrigeration technologies is developed. An economic optimization model is formulated to determine the optimal configuration and operating parameters for the integrated system under specified modes. A comparison framework is established to identify the system with the best economic performance. Using the proposed method, optimization and comparative analyses are conducted for six scenarios with distinct cooling energy demands. Results indicate that organic Rankine cycle integrated with absorption refrigeration and compression-absorption cascade refrigeration achieves superior economic performance under 500 kW at 25 °C and −25 °C, respectively. In contrast, integration with vapor compression refrigeration remains more economically advantageous under 5,000 kW or at 5 °C. Additionally, the effects of cooling energy and waste heat source conditions on economic performance are analyzed, and suitable application scenarios for each system are summarized. This research facilitates automatic design of organic Rankine cycle-based integrated systems with enhanced economic performance, providing valuable guidance for industrial waste heat utilization.
中文翻译:
利用余热进行冷却和热电联产的各种基于有机朗肯循环的集成系统的优化和比较分析
余热回收对于减少能源消耗和碳排放至关重要。有机朗肯循环与吸收式制冷、蒸汽压缩制冷和压缩吸收复叠式制冷相结合,可实现高效的冷却和废热热电联产。然而,现有的研究缺乏统一的优化方法、系统的比较框架和深入的应用场景分析。在此,开发了一个综合集成系统,将有机朗肯循环的操作模式与这些制冷技术相结合。制定经济优化模型,以确定特定模式下集成系统的最佳配置和运行参数。建立了一个比较框架,以确定具有最佳经济性能的系统。使用所提出的方法,对具有不同冷却能量需求的 6 种情景进行了优化和比较分析。结果表明,有机朗肯循环与吸收式制冷和压缩吸收复叠式制冷相结合,分别在 25 °C 和 -25 °C 下在 500 kW 下取得了优异的经济性能。相比之下,在 5,000 kW 或 5 °C 下与蒸汽压缩制冷的集成在经济上仍然更具经济优势。 此外,分析了冷却能和余热源条件对经济性能的影响,并总结了每个系统的适用应用场景。这项研究促进了基于有机朗肯循环的集成系统的自动设计,提高了经济性能,为工业余热利用提供了有价值的指导。
更新日期:2024-12-02
中文翻译:
利用余热进行冷却和热电联产的各种基于有机朗肯循环的集成系统的优化和比较分析
余热回收对于减少能源消耗和碳排放至关重要。有机朗肯循环与吸收式制冷、蒸汽压缩制冷和压缩吸收复叠式制冷相结合,可实现高效的冷却和废热热电联产。然而,现有的研究缺乏统一的优化方法、系统的比较框架和深入的应用场景分析。在此,开发了一个综合集成系统,将有机朗肯循环的操作模式与这些制冷技术相结合。制定经济优化模型,以确定特定模式下集成系统的最佳配置和运行参数。建立了一个比较框架,以确定具有最佳经济性能的系统。使用所提出的方法,对具有不同冷却能量需求的 6 种情景进行了优化和比较分析。结果表明,有机朗肯循环与吸收式制冷和压缩吸收复叠式制冷相结合,分别在 25 °C 和 -25 °C 下在 500 kW 下取得了优异的经济性能。相比之下,在 5,000 kW 或 5 °C 下与蒸汽压缩制冷的集成在经济上仍然更具经济优势。 此外,分析了冷却能和余热源条件对经济性能的影响,并总结了每个系统的适用应用场景。这项研究促进了基于有机朗肯循环的集成系统的自动设计,提高了经济性能,为工业余热利用提供了有价值的指导。