当前位置: X-MOL 学术Inform. Fusion › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Hierarchical bipartite graph based multi-view subspace clustering
Information Fusion ( IF 14.7 ) Pub Date : 2024-11-28 , DOI: 10.1016/j.inffus.2024.102821
Jie Zhou, Feiping Nie, Xinglong Luo, Xingshi He

Multi-view subspace clustering has attracted much attention because of its effectiveness in unsupervised learning. The high time consumption and hyper-parameters are the main obstacles to its development. In this paper, we present a novel method to effectively solve these two defects. First, we employ the bisecting k-means method to generate anchors and construct the hierarchical bipartite graph, which greatly reduce the time consumption. Moreover, we adopt an auto-weighted allocation strategy to learn appropriate weight factors for each view, which can avoid the influence of hyper-parameters. Furthermore, by imposing low rank constraints on the fusion graph, our proposed method can directly obtained the cluster indicators without any post-processing operations. Finally, numerous experiments verify the superiority of proposed method.

中文翻译:


基于分层二分图的多视图子空间聚类



多视图子空间聚类因其在无监督学习中的有效性而备受关注。高耗时和超参数是其开发的主要障碍。在本文中,我们提出了一种有效解决这两个缺陷的新方法。首先,我们采用一等分 k-means 方法生成锚点并构建分层二分图,大大减少了时间消耗。此外,我们采用自动加权分配策略来为每个视图学习合适的权重因子,这样可以避免超参数的影响。此外,通过对融合图施加低秩约束,我们提出的方法可以直接获得聚类指标,而无需任何后处理操作。最后,大量实验验证了所提方法的优越性。
更新日期:2024-11-28
down
wechat
bug