当前位置: X-MOL 学术J. Comb. Theory A › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A rank two Leonard pair in Terwilliger algebras of Doob graphs
Journal of Combinatorial Theory Series A ( IF 0.9 ) Pub Date : 2024-09-23 , DOI: 10.1016/j.jcta.2024.105958
John Vincent S. Morales

Let Γ=Γ(n,m) denote the Doob graph formed by the Cartesian product of the nth Cartesian power of the Shrikhande graph and the mth Cartesian power of the complete graph on four vertices. Let T=T(x) denote the Terwilliger algebra of Γ with respect to a fixed vertex x of Γ and let W denote an arbitrary non-thin irreducible T-module in the standard module of Γ. In (Morales and Palma, 2021 [25]), it was shown that there exists a Lie algebra embedding π from the special orthogonal algebra so4 into T and that W is an irreducible π(so4)-module. In this paper, we consider two Cartan subalgebras h,h˜ of so4 such that h,h˜ generate so4. Using the embedding π:so4T, we show that π(h) and π(h˜) act on W as a rank two Leonard pair. We also obtain several direct sum decompositions of W akin to how split decompositions are obtained from Leonard pairs of rank one.

中文翻译:


Doob 图 Terwilliger 代数中的二阶 Leonard 对



设 Γ=Γ(n,m) 表示由 Shrikhande 图的第 n 次笛卡尔幂的笛卡尔乘积和完整图的第 m 次笛卡尔幂在四个顶点上形成的 Doob 图。设 T=T(x) 表示 Γ 相对于 Γ 的固定顶点 x 的 Terwilliger 代数,设 W 表示 Γ 的标准模中的任意非薄不可约的 T 模。在 (Morales and Palma, 2021 [25]) 中,表明存在一个 Lie 代数嵌入π从特殊正交代数 so4 到 T 中,并且 W 是一个不可约的 π(so4) 模块。在本文中,我们考虑了 so4 的两个 Cartan 子代数 h,h ̃,使得 h,h ̃ 生成 so4。使用嵌入 π:so4→T,我们表明 π(h) 和 π(h ̃) 作为二阶 Leonard 对作用于 W。我们还获得了 W 的几个直接和分解,类似于从 1 阶的 Leonard 对中获得分裂分解的方式。
更新日期:2024-09-23
down
wechat
bug