当前位置: X-MOL 学术J. Comb. Theory A › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Proofs of some conjectures of Merca on truncated series involving the Rogers-Ramanujan functions
Journal of Combinatorial Theory Series A ( IF 0.9 ) Pub Date : 2024-09-19 , DOI: 10.1016/j.jcta.2024.105956
Yongqiang Chen, Olivia X.M. Yao

In 2012, Andrews and Merca investigated the truncated version of the Euler pentagonal number theorem. Their work has opened up a new study on truncated theta series and has inspired several mathematicians to work on the topic. In 2019, Merca studied the Rogers-Ramanujan functions and posed three groups of conjectures on truncated series involving the Rogers-Ramanujan functions. In this paper, we present a uniform method to prove the three groups of conjectures given by Merca based on a result due to Pólya and Szegö.

中文翻译:


Merca 在涉及 Rogers-Ramanujan 函数的截断级数上的一些猜想的证明



2012 年,Andrews 和 Merca 研究了欧拉五边形数定理的截断版本。他们的工作开启了对截断 theta 级数的新研究,并激发了几位数学家研究该主题。2019 年,Merca 研究了 Rogers-Ramanujan 函数,并在涉及 Rogers-Ramanujan 函数的截断级数上提出了三组猜想。在本文中,我们提出了一种统一的方法来证明 Merca 根据 Pólya 和 Szegö 的结果给出的三组猜想。
更新日期:2024-09-19
down
wechat
bug