当前位置:
X-MOL 学术
›
J. Ind. Eng. Chem.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Enhanced adsorption of Pb(II) ions using a magnetic mesoporous molecular sieves derived from coal fly ash and Nano-Fe3O4 particles
Journal of Industrial and Engineering Chemistry ( IF 5.9 ) Pub Date : 2024-11-28 , DOI: 10.1016/j.jiec.2024.11.053 Xiuru Xie, Chang Lei, Weili Dai, Zhiyue Zhao, Wengfeng Wang
Journal of Industrial and Engineering Chemistry ( IF 5.9 ) Pub Date : 2024-11-28 , DOI: 10.1016/j.jiec.2024.11.053 Xiuru Xie, Chang Lei, Weili Dai, Zhiyue Zhao, Wengfeng Wang
The synthesis of high-performance adsorption materials from coal fly ash presents a promising approach to mitigating environmental pollution in wastewater treatment processes. A novel magnetic mesoporous molecular sieve (MMS) was synthesized through hydrothermal methods utilizing coal fly ash and nano-Fe3 O4 particles. The resultant MMS was characterized using XRD, FT-IR, SEM, TEM, and BET analysis. The adsorption performance of MMS for Pb(II) was evaluated by examining thermodynamic and adsorption models. The results show that MMS exhibited mesoporous structures with embedded Fe3 O4 nanoparticles, possessing a surface area of 22.94 m2 /g and a pore size of 28.47 nm, favorable for applications in aqueous adsorption. The adsorption behavior of Pb(II) onto MMS adhered well to both pseudo-first-order kinetic model and Langmuir isotherm, with a maximum adsorption capacity of 236.97 mg/L. Further insights into the adsorption mechanism were provided by zeta potential and XPS analysis, which revealed that lead is effectively adsorbed onto MMS, with the lead existing predominantly in the form of oxides on the MMS surface. The adsorption process was primarily governed by physical adsorption, accompanied by chemical adsorption. This study presents an innovative approach to converting coal fly ash into highly efficient magnetic adsorbents, thereby offering a sustainable solution for wastewater treatment.
中文翻译:
使用源自粉煤灰和纳米 Fe3O4 颗粒的磁性介孔分子筛增强对 Pb(II) 离子的吸附
从粉煤灰合成高性能吸附材料为减轻废水处理过程中的环境污染提供了一种很有前途的方法。利用粉煤灰和纳米 Fe3O4 颗粒,通过水热法合成了一种新型磁性介孔分子筛 (MMS)。使用 XRD、FT-IR、SEM、TEM 和 BET 分析对所得 MMS 进行表征。通过检查热力学和吸附模型来评估 MMS 对 Pb(II) 的吸附性能。结果表明,MMS 表现出嵌入 Fe3O4 纳米颗粒的介孔结构,表面积为 22.94 m2/g,孔径为 28.47 nm,有利于水吸附应用。Pb(II) 对 MMS 的吸附行为与准一级动力学模型和 Langmuir 等温线均具有良好的一致性,最大吸附容量为 236.97 mg/L。zeta 电位和 XPS 分析进一步了解了吸附机制,结果表明铅被有效地吸附在 MMS 上,铅主要以氧化物的形式存在于 MMS 表面。吸附过程主要受物理吸附控制,并伴有化学吸附。本研究提出了一种将粉煤灰转化为高效磁吸附剂的创新方法,从而为废水处理提供可持续的解决方案。
更新日期:2024-11-28
中文翻译:
使用源自粉煤灰和纳米 Fe3O4 颗粒的磁性介孔分子筛增强对 Pb(II) 离子的吸附
从粉煤灰合成高性能吸附材料为减轻废水处理过程中的环境污染提供了一种很有前途的方法。利用粉煤灰和纳米 Fe3O4 颗粒,通过水热法合成了一种新型磁性介孔分子筛 (MMS)。使用 XRD、FT-IR、SEM、TEM 和 BET 分析对所得 MMS 进行表征。通过检查热力学和吸附模型来评估 MMS 对 Pb(II) 的吸附性能。结果表明,MMS 表现出嵌入 Fe3O4 纳米颗粒的介孔结构,表面积为 22.94 m2/g,孔径为 28.47 nm,有利于水吸附应用。Pb(II) 对 MMS 的吸附行为与准一级动力学模型和 Langmuir 等温线均具有良好的一致性,最大吸附容量为 236.97 mg/L。zeta 电位和 XPS 分析进一步了解了吸附机制,结果表明铅被有效地吸附在 MMS 上,铅主要以氧化物的形式存在于 MMS 表面。吸附过程主要受物理吸附控制,并伴有化学吸附。本研究提出了一种将粉煤灰转化为高效磁吸附剂的创新方法,从而为废水处理提供可持续的解决方案。