当前位置:
X-MOL 学术
›
J. Ind. Eng. Chem.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Photocatalytic degradation of rhodamine B dye using PEG@ZnS:Au and PVP@ZnS:Au nanoparticles
Journal of Industrial and Engineering Chemistry ( IF 5.9 ) Pub Date : 2024-11-26 , DOI: 10.1016/j.jiec.2024.11.045 Lal Lianmawii, P.C. Chuaudingpuia, Niveda Leishangthem, Fidelia Lalrindiki, N. Mohondas Singh
Journal of Industrial and Engineering Chemistry ( IF 5.9 ) Pub Date : 2024-11-26 , DOI: 10.1016/j.jiec.2024.11.045 Lal Lianmawii, P.C. Chuaudingpuia, Niveda Leishangthem, Fidelia Lalrindiki, N. Mohondas Singh
The textile industry significant contribution to water pollution necessitates the development of innovative solutions for efficient wastewater treatment. This study reports the successful synthesis of PEG@ZnS:Au and PVP@ZnS:Au nanoparticles via co-precipitation method, characterized by a suite of analytical techniques including photoluminescence (PL), Brunauer-Emmett-Teller (BET) analysis, scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD). The photocatalytic activity of the synthesized nanoparticles was evaluated, revealing that PEG@ZnS:Au and PVP@ZnS:Au nanoparticles degraded 94.25 % and 91.45 % of rhodamine B dye, respectively, within a 30-minute timeframe, showcasing their exceptional catalytic performance. Kinetic studies revealed pseudo-first-order behavior, conforming to the Langmuir isotherm model, with an endothermic adsorption process. The degradation process is mediated by forming reactive oxygen species (ROS), which are generated by electron-hole pairs upon photoexcitation. This research underscores the potential of nanoscale materials for enhanced photocatalysis. It provides valuable insights into developing efficient wastewater treatment strategies, highlighting a promising approach for mitigating the environmental impact of textile industry effluents.
中文翻译:
使用 PEG@ZnS:Au 和 PVP@ZnS:Au 纳米颗粒光催化降解罗丹明 B 染料
纺织业对水污染的重大贡献需要开发创新的解决方案来实现高效的废水处理。本研究报道了通过共沉淀法成功合成 PEG@ZnS:Au 和 PVP@ZnS:Au 纳米颗粒,其特征是一套分析技术,包括光致发光 (PL)、Brunauer-Emmett-Teller (BET) 分析、扫描电子显微镜 (SEM)、透射电子显微镜 (TEM)、傅里叶变换红外光谱 (FTIR) 和 X 射线衍射 (XRD)。评估了合成纳米颗粒的光催化活性,结果表明 PEG@ZnS:Au 和 PVP@ZnS:Au 纳米颗粒在 30 分钟的时间内分别降解了 94.25% 和 91.45% 的罗丹明 B 染料,展示了它们卓越的催化性能。动力学研究揭示了伪一级行为,符合 Langmuir 等温线模型,具有吸热吸附过程。降解过程是通过形成活性氧 (ROS) 来介导的,活性氧 (ROS) 由光激发时的电子-空穴对产生。这项研究强调了纳米级材料在增强光催化方面的潜力。它为制定高效的废水处理策略提供了宝贵的见解,强调了减轻纺织行业废水对环境影响的一种有前途的方法。
更新日期:2024-11-26
中文翻译:
使用 PEG@ZnS:Au 和 PVP@ZnS:Au 纳米颗粒光催化降解罗丹明 B 染料
纺织业对水污染的重大贡献需要开发创新的解决方案来实现高效的废水处理。本研究报道了通过共沉淀法成功合成 PEG@ZnS:Au 和 PVP@ZnS:Au 纳米颗粒,其特征是一套分析技术,包括光致发光 (PL)、Brunauer-Emmett-Teller (BET) 分析、扫描电子显微镜 (SEM)、透射电子显微镜 (TEM)、傅里叶变换红外光谱 (FTIR) 和 X 射线衍射 (XRD)。评估了合成纳米颗粒的光催化活性,结果表明 PEG@ZnS:Au 和 PVP@ZnS:Au 纳米颗粒在 30 分钟的时间内分别降解了 94.25% 和 91.45% 的罗丹明 B 染料,展示了它们卓越的催化性能。动力学研究揭示了伪一级行为,符合 Langmuir 等温线模型,具有吸热吸附过程。降解过程是通过形成活性氧 (ROS) 来介导的,活性氧 (ROS) 由光激发时的电子-空穴对产生。这项研究强调了纳米级材料在增强光催化方面的潜力。它为制定高效的废水处理策略提供了宝贵的见解,强调了减轻纺织行业废水对环境影响的一种有前途的方法。