当前位置:
X-MOL 学术
›
Int. J. Mech. Sci.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
A stick-slip piezoelectric actuator with large stepping displacement
International Journal of Mechanical Sciences ( IF 7.1 ) Pub Date : 2024-11-24 , DOI: 10.1016/j.ijmecsci.2024.109850 Zhaochen Ding, Xiaoqin Zhou, Zhi Xu, Qiang Liu, Jingshi Dong, Huadong Yu
International Journal of Mechanical Sciences ( IF 7.1 ) Pub Date : 2024-11-24 , DOI: 10.1016/j.ijmecsci.2024.109850 Zhaochen Ding, Xiaoqin Zhou, Zhi Xu, Qiang Liu, Jingshi Dong, Huadong Yu
Piezoelectric actuators have gained widespread attention for their quick response, low energy consumption, and resistance to electromagnetic interference. However, current piezoelectric actuators face challenges in achieving large stepping displacement within compact spaces owing to the small output of individual piezoelectric elements. To address this issue, a stick-slip piezoelectric actuator based on the lever and triangular coupling amplification principle is proposed in this study. The improved lever and triangular amplification mechanisms significantly enhance the forward displacement during the stick stage. Owing to the unique slender flexible driving foot design of the triangular amplification section, the coupled triangular amplification mechanism can store elastic potential energy during the stick stage without compromising structural compactness. This energy is then released during the slip stage to counteract the sliding friction, enabling the actuator to achieve a sudden increase in characteristics. The displacement amplification effect of the flexible hinge mechanism is examined through theoretical calculations and simulations. The experimental results confirm that the proposed actuator can achieve large stepping displacement and high stepping performance factors under low-frequency conditions. Specifically, at a voltage of 100 V and frequency of 10 Hz, the stepping displacement and stepping performance factor reached 144 μm and 1.44 μm/V, respectively. Owing to the increased stepping displacement, the actuator achieved a maximum speed of 99.1 mm/s at 800 Hz. These features demonstrate the tremendous potential of the proposed actuator in various applications.
中文翻译:
一种具有大步进位移的粘滑压电致动器
压电致动器因其响应速度快、能耗低、抗电磁干扰等特点而受到广泛关注。然而,由于单个压电元件的输出较小,当前的压电促动器在紧凑的空间内实现大步进位移面临着挑战。针对这一问题,该文提出了一种基于杠杆和三角耦合放大原理的粘滑压电致动器。改进的杠杆和三角放大机构显着增强了棒状阶段的向前位移。由于三角形放大部分独特的细长柔性驱动脚设计,耦合的三角形放大机构可以在棒状阶段存储弹性势能,而不会影响结构紧凑性。然后在滑动阶段释放这种能量以抵消滑动摩擦,使致动器能够实现特性的突然增加。通过理论计算和仿真研究了柔性铰链机构的位移放大效应。实验结果证实,所提出的促动器在低频条件下能够实现大步进位移和高步进性能因数。具体来说,在 100 V 电压和 10 Hz 频率下,步进位移和步进性能因数分别达到 144 μm 和 1.44 μm/V。由于步进位移增加,致动器在 800 Hz 时达到 99.1 mm/s 的最大速度。这些特性证明了所提出的执行器在各种应用中的巨大潜力。
更新日期:2024-11-24
中文翻译:
一种具有大步进位移的粘滑压电致动器
压电致动器因其响应速度快、能耗低、抗电磁干扰等特点而受到广泛关注。然而,由于单个压电元件的输出较小,当前的压电促动器在紧凑的空间内实现大步进位移面临着挑战。针对这一问题,该文提出了一种基于杠杆和三角耦合放大原理的粘滑压电致动器。改进的杠杆和三角放大机构显着增强了棒状阶段的向前位移。由于三角形放大部分独特的细长柔性驱动脚设计,耦合的三角形放大机构可以在棒状阶段存储弹性势能,而不会影响结构紧凑性。然后在滑动阶段释放这种能量以抵消滑动摩擦,使致动器能够实现特性的突然增加。通过理论计算和仿真研究了柔性铰链机构的位移放大效应。实验结果证实,所提出的促动器在低频条件下能够实现大步进位移和高步进性能因数。具体来说,在 100 V 电压和 10 Hz 频率下,步进位移和步进性能因数分别达到 144 μm 和 1.44 μm/V。由于步进位移增加,致动器在 800 Hz 时达到 99.1 mm/s 的最大速度。这些特性证明了所提出的执行器在各种应用中的巨大潜力。