当前位置:
X-MOL 学术
›
Int. J. Mech. Sci.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Strain mediated transition between skyrmion and antiskyrmion in ferromagnetic thin films
International Journal of Mechanical Sciences ( IF 7.1 ) Pub Date : 2024-11-19 , DOI: 10.1016/j.ijmecsci.2024.109849 Jiajun Sun, Shengbin Shi, Peng Han, Yu Wang, Yunhong Zhao, Bai-Xiang Xu, Jie Wang
International Journal of Mechanical Sciences ( IF 7.1 ) Pub Date : 2024-11-19 , DOI: 10.1016/j.ijmecsci.2024.109849 Jiajun Sun, Shengbin Shi, Peng Han, Yu Wang, Yunhong Zhao, Bai-Xiang Xu, Jie Wang
Magnetic topological structures have attracted great attention due to their potential applications in memory and logic devices. Achieving the controllable transition between different magnetic topological structures is crucial for their application. Here, we develop a phase field model with strain-modulated Dzyaloshinskii-Moriya interaction (DMI) and predict the controllable transitions between skyrmion and antiskyrmion states in a ferromagnetic thin film through the application of different strains. It is found that the anisotropic DMI induced by anisotropic strains in the thin film plays an important role in the transitions between various magnetic structures, including skyrmion, antiskyrmion, single domain, and helical domain. Anisotropic DMI also has a significant impact on the chirality and deformation of magnetic topological structures, among which anisotropic DMI can cause anisotropic deformation of skyrmions and antiskyrmions. Furthermore, the formation mechanism of antiskyrmions is elucidated by decomposing the magnetization vectors into Bloch and Néel-type components based on the Lifshitz invariant. This work not only provides an insight into the dynamic behaviors of topological structures but also suggests a new method for controlling magnetic configurations through strain engineering.
中文翻译:
铁磁薄膜中斯格明子和反斯格明子之间的应变介导的转变
磁性拓扑结构因其在存储器和逻辑器件中的潜在应用而受到广泛关注。实现不同磁性拓扑结构之间的可控过渡对于其应用至关重要。在这里,我们开发了一个具有应变调制 Dzyaloshinskii-Moriya 相互作用 (DMI) 的相场模型,并通过应用不同的应变来预测铁磁薄膜中斯格明子和反斯格明子状态之间的可控转变。研究发现,薄膜中各向异性应变诱导的各向异性 DMI 在各种磁性结构之间的过渡中起着重要作用,包括斯格明子、反斯格明子、单畴和螺旋畴。各向异性 DMI 对磁性拓扑结构的手性和变形也有显著影响,其中各向异性 DMI 可引起斯格明子和反斯格明子的各向异性变形。此外,通过将磁化矢量分解为基于 Lifshitz 不变量的 Bloch 和 Néel 型分量来阐明反斯格明子的形成机制。这项工作不仅提供了对拓扑结构动力学行为的见解,还提出了一种通过应变工程控制磁性构型的新方法。
更新日期:2024-11-19
中文翻译:
铁磁薄膜中斯格明子和反斯格明子之间的应变介导的转变
磁性拓扑结构因其在存储器和逻辑器件中的潜在应用而受到广泛关注。实现不同磁性拓扑结构之间的可控过渡对于其应用至关重要。在这里,我们开发了一个具有应变调制 Dzyaloshinskii-Moriya 相互作用 (DMI) 的相场模型,并通过应用不同的应变来预测铁磁薄膜中斯格明子和反斯格明子状态之间的可控转变。研究发现,薄膜中各向异性应变诱导的各向异性 DMI 在各种磁性结构之间的过渡中起着重要作用,包括斯格明子、反斯格明子、单畴和螺旋畴。各向异性 DMI 对磁性拓扑结构的手性和变形也有显著影响,其中各向异性 DMI 可引起斯格明子和反斯格明子的各向异性变形。此外,通过将磁化矢量分解为基于 Lifshitz 不变量的 Bloch 和 Néel 型分量来阐明反斯格明子的形成机制。这项工作不仅提供了对拓扑结构动力学行为的见解,还提出了一种通过应变工程控制磁性构型的新方法。