当前位置:
X-MOL 学术
›
J. Quant. Spectrosc. Radiat. Transf.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Development and demonstration of a two-color nitric oxide vibrational temperature diagnostic using spectrally-resolved ultraviolet laser absorption
Journal of Quantitative Spectroscopy and Radiative Transfer ( IF 2.3 ) Pub Date : 2024-11-21 , DOI: 10.1016/j.jqsrt.2024.109275 Spencer C. Barnes, Jesse W. Streicher, Ajay Krish, Ronald K. Hanson
Journal of Quantitative Spectroscopy and Radiative Transfer ( IF 2.3 ) Pub Date : 2024-11-21 , DOI: 10.1016/j.jqsrt.2024.109275 Spencer C. Barnes, Jesse W. Streicher, Ajay Krish, Ronald K. Hanson
Development of a new ultraviolet (UV) laser absorption diagnostic has enabled the probing of nitric oxide (NO) in the second excited vibrational state (v” = 2) for inferences of quantum-state-specific number density and vibrational temperature time-histories. Spectroscopic modeling informed the selection of the new 246.3222 nm wavelength, as this wavelength exhibits high sensitivity for thermometry in the 2000 – 8000 K temperature range. This 246.3222 nm absorption feature consists of contributions from the R 12 ( 24 . 5 ) , R 11 ( 15 . 5 ) , Q 22 ( 24 . 5 ) , and Q 21 ( 15 . 5 ) transitions all originating in the v” = 2 state. Absorption cross-sections at this selected wavelength were measured in reflected shock experiments for sweeps of both wavelength and temperature. The wavelength sweep investigated cross-sections over a 246.3202 – 246.3246 nm range at 4590 K, and the temperature sweep measured cross-sections over a 2500 – 7500 K range at the peak of the absorption feature (246.3222 nm). Cross-section results agree with the Stanford NO gamma-band model to within ± 5%, confirming the use of the model for subsequent thermometry studies. Thermometry was demonstrated in reflected shock experiments probing the vibrational relaxation and chemical reactions in 2% NO diluted in either argon (Ar) or nitrogen (N2 ). These experiments leverage previous UV laser absorption diagnostics that probe NO in the ground vibrational state (v” = 0) using the R11 (26.5), R12 (34.5), Q21 (26.5) , and Q22 (34.5) transitions near 224.8155 nm and the Q11 (12.5) , R12 (19.5) , P21 (12.5) , and Q22 (19.5) transitions near 226.1026 nm, which were studied in Ref. [1] . The combination of the new diagnostic wavelength with previously validated diagnostics yields low-uncertainty vibrational temperature time-histories that are in excellent agreement with previously inferred vibrational relaxation time results from Refs. [2] and [3] . Future work will apply this two-color nitric oxide vibrational temperature diagnostic to probe the vibrational temperature of NO formed in high-temperature, shock-heated air at conditions relevant to hypersonic and reentry vehicles.
中文翻译:
利用光谱分辨紫外激光吸收的双色一氧化氮振动温度诊断的开发和演示
一种新的紫外 (UV) 激光吸收诊断的开发使得探测第二激发振动状态 (v“ = 2) 中的一氧化氮 (NO) 成为可能,用于推断量子态特定数密度和振动温度时间历史。光谱建模为选择 246.3222 nm 新波长提供了信息,因为该波长在 2000 – 8000 K 温度范围内对测温表现出高灵敏度。这个 246.3222 nm 吸收特征由 R12(24.5)、R11(15.5)、Q22(24.5) 和 Q21(15.5) 跃迁的贡献组成,这些跃迁都起源于 v“ = 2 状态。在波长和温度扫描的反射冲击实验中测量了该选定波长的吸收截面。波长扫描研究了 4590 K 时 246.3202 – 246.3246 nm 范围内的横截面,温度扫描测量了吸收特征峰值 (246.3222 nm) 处 2500 – 7500 K 范围内的横截面。横截面结果与斯坦福 NO 伽马波段模型的一致性在 ±5% 以内,证实了该模型用于后续的测温研究。在反射冲击实验中证明了测温法,该实验在氩气 (Ar) 或氮气 (N2) 稀释的 2% NO 中探测振动弛豫和化学反应。这些实验利用了以前的紫外激光吸收诊断,使用224.8155 nm附近的R11(26.5)、R12(34.5)、Q21(26.5)和Q22(34.5)跃迁以及226.1026 nm附近的Q11(12.5)、R12(19.5)、P21(12.5)和Q22(19.5)跃迁探测地面振动状态(v“ = 0)中的NO,这在参考文献[1]中进行了研究。 新的诊断波长与先前验证的诊断相结合,产生了低不确定性的振动温度时间历程,与先前从 Refs 推断的振动弛豫时间结果非常吻合。[2] 和 [3]。未来的工作将应用这种双色一氧化氮振动温度诊断来探测在与高超音速和再入飞行器相关的条件下,高温、冲击加热空气中形成的 NO 的振动温度。
更新日期:2024-11-21
中文翻译:
利用光谱分辨紫外激光吸收的双色一氧化氮振动温度诊断的开发和演示
一种新的紫外 (UV) 激光吸收诊断的开发使得探测第二激发振动状态 (v“ = 2) 中的一氧化氮 (NO) 成为可能,用于推断量子态特定数密度和振动温度时间历史。光谱建模为选择 246.3222 nm 新波长提供了信息,因为该波长在 2000 – 8000 K 温度范围内对测温表现出高灵敏度。这个 246.3222 nm 吸收特征由 R12(24.5)、R11(15.5)、Q22(24.5) 和 Q21(15.5) 跃迁的贡献组成,这些跃迁都起源于 v“ = 2 状态。在波长和温度扫描的反射冲击实验中测量了该选定波长的吸收截面。波长扫描研究了 4590 K 时 246.3202 – 246.3246 nm 范围内的横截面,温度扫描测量了吸收特征峰值 (246.3222 nm) 处 2500 – 7500 K 范围内的横截面。横截面结果与斯坦福 NO 伽马波段模型的一致性在 ±5% 以内,证实了该模型用于后续的测温研究。在反射冲击实验中证明了测温法,该实验在氩气 (Ar) 或氮气 (N2) 稀释的 2% NO 中探测振动弛豫和化学反应。这些实验利用了以前的紫外激光吸收诊断,使用224.8155 nm附近的R11(26.5)、R12(34.5)、Q21(26.5)和Q22(34.5)跃迁以及226.1026 nm附近的Q11(12.5)、R12(19.5)、P21(12.5)和Q22(19.5)跃迁探测地面振动状态(v“ = 0)中的NO,这在参考文献[1]中进行了研究。 新的诊断波长与先前验证的诊断相结合,产生了低不确定性的振动温度时间历程,与先前从 Refs 推断的振动弛豫时间结果非常吻合。[2] 和 [3]。未来的工作将应用这种双色一氧化氮振动温度诊断来探测在与高超音速和再入飞行器相关的条件下,高温、冲击加热空气中形成的 NO 的振动温度。