当前位置:
X-MOL 学术
›
Int. J. Refract. Met. Hard Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Microstructure and mechanical properties of W-HfC alloy synthesized by in-situ fabrication via pressureless sintering
International Journal of Refractory Metals & Hard Materials ( IF 4.2 ) Pub Date : 2024-11-26 , DOI: 10.1016/j.ijrmhm.2024.106978 B.Z. Sun, L. Gao, L.H. Lou, R. Li, J.P. Song, Y.L. Liu, Y. Qi
International Journal of Refractory Metals & Hard Materials ( IF 4.2 ) Pub Date : 2024-11-26 , DOI: 10.1016/j.ijrmhm.2024.106978 B.Z. Sun, L. Gao, L.H. Lou, R. Li, J.P. Song, Y.L. Liu, Y. Qi
The materials, primarily utilized in the manufacturing process, significantly impact the microstructure and mechanical properties of W-HfC alloys. In this study, different initial composition, such as HfH2 /WC, HfH2 /C and HfC, were respectively mixed into W powders, three categories of W-HfC alloys (abbreviated as WHC1, WHC2 and WHC3 successively) were fabricated by in-situ reaction sintering methods. The microstructure and mechanical properties of three alloys were investigated comparatively by using X-ray diffraction, electron microscopy and high temperature tensile tests. The results revealed that WHC2 alloy presents an exceptional ductile-brittle transition temperature of ∼300 °C and the best comprehensive performance. Tensile testing at 300 °C indicates that WHC2 alloy exhibits a complete plastic fracture curve with a tensile strength of 400 MPa and a residual deformation of 9 %, as well as the plasticity enhancement. It is mainly attributable to the dispersion strengthening effect of second phase particles at grain boundaries and within W-matrix grains. Furthermore, the excellent overall performance of the WHC2 alloy demonstrates that the in-situ reaction can significantly reduce sintering difficulties, while the resultant second phase particles provide considerable advantages in improving the properties of W-based alloys. These findings provide valuable insights into the synthesis process and mechanical performance of W-HfC alloys, enabling advancements in their application in high-temperature environments.
中文翻译:
无压烧结原位制备 W-HfC 合金的微观组织和力学性能
这些材料主要用于制造过程,对 W-HfC 合金的微观结构和机械性能产生重大影响。本研究将 HfH2/WC、HfH2/C 和 HfC 等不同初始成分分别混合到 W 粉末中,通过原位反应烧结方法制备了三类 W-HfC 合金(依次缩写为 WHC1、WHC2 和 WHC3)。采用 X 射线衍射、电子显微镜和高温拉伸试验对 3 种合金的微观组织和力学性能进行了比较研究。结果表明,WHC2 合金表现出优异的 ∼300 °C 韧性脆性转变温度和最佳的综合性能。300 °C 的拉伸试验表明,WHC2 合金表现出完整的塑性断裂曲线,拉伸强度为 400 MPa,残余变形为 9 %,塑性增强。这主要归因于第二相颗粒在晶界和 W 基体晶粒内的分散增强效应。此外,WHC2 合金的优异整体性能表明,原位反应可以显著降低烧结难度,而所得的第二相颗粒在改善 W 基合金的性能方面具有相当大的优势。这些发现为 W-HfC 合金的合成过程和机械性能提供了有价值的见解,使其在高温环境中的应用取得了进展。
更新日期:2024-11-26
中文翻译:
无压烧结原位制备 W-HfC 合金的微观组织和力学性能
这些材料主要用于制造过程,对 W-HfC 合金的微观结构和机械性能产生重大影响。本研究将 HfH2/WC、HfH2/C 和 HfC 等不同初始成分分别混合到 W 粉末中,通过原位反应烧结方法制备了三类 W-HfC 合金(依次缩写为 WHC1、WHC2 和 WHC3)。采用 X 射线衍射、电子显微镜和高温拉伸试验对 3 种合金的微观组织和力学性能进行了比较研究。结果表明,WHC2 合金表现出优异的 ∼300 °C 韧性脆性转变温度和最佳的综合性能。300 °C 的拉伸试验表明,WHC2 合金表现出完整的塑性断裂曲线,拉伸强度为 400 MPa,残余变形为 9 %,塑性增强。这主要归因于第二相颗粒在晶界和 W 基体晶粒内的分散增强效应。此外,WHC2 合金的优异整体性能表明,原位反应可以显著降低烧结难度,而所得的第二相颗粒在改善 W 基合金的性能方面具有相当大的优势。这些发现为 W-HfC 合金的合成过程和机械性能提供了有价值的见解,使其在高温环境中的应用取得了进展。