当前位置:
X-MOL 学术
›
J. Build. Eng.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Scientific advances regarding the effect of carbonated alkaline waste materials on pozzolanic reactivity
Journal of Building Engineering ( IF 6.7 ) Pub Date : 2024-11-28 , DOI: 10.1016/j.jobe.2024.111423 M. Frías, A.M. Moreno-Reyes, R. Vigil, R. García, E. Villar, A. Oleaga, I. Vegas
Journal of Building Engineering ( IF 6.7 ) Pub Date : 2024-11-28 , DOI: 10.1016/j.jobe.2024.111423 M. Frías, A.M. Moreno-Reyes, R. Vigil, R. García, E. Villar, A. Oleaga, I. Vegas
Using alkaline waste materials as biomass ash (BA), Recycled Concrete Fines (RCF) from constructions and demolition waste (CDW) and ladle furnace slags (LFS), as CO2 massive sinks worldwide through the generation of new potential SCM by Accelerated Carbonation Technologies to reduce the cement industry's carbon footprint is increasingly attracting attention for its environmental benefits and the materials' improved performance in blended cement matrices. This paper employs characterization and identification techniques (XRF, XRD–Rietveld, SEM/EDX, BET, TG/DTG, FTIR, NMR) to analyse the effect of accelerated carbonation of white ladle furnace slag, siliceous construction and demolition waste and biomass ash on those materials' physical and mineralogical properties, their chemical reactivity and their pozzolan/lime systems' mineralogical phases. The results show that although behaviour differs depending on the carbonated waste materials' alkalinity, all three present notable increases in BET surface area (7–17.5 m2 /g) and substantially altered potentially carbonatable mineralogical phases (e.g. portlandite, Ca-olivine, periclase, hydrated cement phases), which mostly transition towards calcite, due to the CO2 uptake. Thermodynamic modelling of the pozzolanic reaction indicates that CSH/C(A)SH) gels are the most stable phases, followed by ettringite, C4 AH13 and C4 AcH12 .
中文翻译:
碳酸碱性废料对火山灰反应性影响的科学进展
使用碱性废料作为生物质灰分 (BA)、来自建筑和拆除废物 (CDW) 的回收混凝土细粉 (RCF) 以及钢包炉炉渣 (LFS),通过加速碳化技术产生新的潜在 SCM 来减少水泥行业的碳足迹,因其环境效益和材料在混合水泥基体中的改进性能而越来越受到关注。本文采用表征和鉴定技术(XRF、XRD-Rietveld、SEM/EDX、BET、TG/DTG、FTIR、NMR)来分析白钢包炉炉渣、硅质建筑和拆除废料以及生物质灰分的加速碳化对这些材料的物理和矿物学特性、它们的化学反应性以及它们的火山灰/石灰系统的矿物学阶段的影响。结果表明,尽管行为因碳酸废料的碱度而异,但所有三种物质的 BET 表面积都显着增加 (7–17.5 m2/g),并显着改变了潜在的可碳化矿物相(例如波特兰石、钙橄榄石、方镁石、水化水泥相),由于 CO2 吸收,这些相大多转变为方解石。火山灰反应的热力学模型表明,CSH/C(A)SH) 凝胶是最稳定的固定相,其次是钙矾石、C4AH13 和 C4AcH12。
更新日期:2024-11-28
中文翻译:
碳酸碱性废料对火山灰反应性影响的科学进展
使用碱性废料作为生物质灰分 (BA)、来自建筑和拆除废物 (CDW) 的回收混凝土细粉 (RCF) 以及钢包炉炉渣 (LFS),通过加速碳化技术产生新的潜在 SCM 来减少水泥行业的碳足迹,因其环境效益和材料在混合水泥基体中的改进性能而越来越受到关注。本文采用表征和鉴定技术(XRF、XRD-Rietveld、SEM/EDX、BET、TG/DTG、FTIR、NMR)来分析白钢包炉炉渣、硅质建筑和拆除废料以及生物质灰分的加速碳化对这些材料的物理和矿物学特性、它们的化学反应性以及它们的火山灰/石灰系统的矿物学阶段的影响。结果表明,尽管行为因碳酸废料的碱度而异,但所有三种物质的 BET 表面积都显着增加 (7–17.5 m2/g),并显着改变了潜在的可碳化矿物相(例如波特兰石、钙橄榄石、方镁石、水化水泥相),由于 CO2 吸收,这些相大多转变为方解石。火山灰反应的热力学模型表明,CSH/C(A)SH) 凝胶是最稳定的固定相,其次是钙矾石、C4AH13 和 C4AcH12。