当前位置: X-MOL 学术Eng. Anal. Bound. Elem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A new multi-physical particle-based hybrid model for 2D incompressible generalized Newtonian two-phase MHD flow with large density ratio
Engineering Analysis With Boundary Elements ( IF 4.2 ) Pub Date : 2024-11-26 , DOI: 10.1016/j.enganabound.2024.106045
Qiushuang Shi, Tao Jiang, Jingjun Zhao

An accurate and stable weighted-least-squares multi-physical particle-based (WLS-MPP) hybrid model is developed to simulate the incompressible generalized Newtonian two-phase magnetohydrodynamics (MHD) flows, and then it is extended to predict a bubble rising process in shear-thinning MHD flow with large density difference, for the first time. The development of WLS-MPP hybrid model for two-phase MHD flow is derived from that: (a) the weighted-least-squares (WLS) scheme is adopted to approximate the spatial derivatives in incompressible two-phase MHD governing equations; (b) two different stable models from the smoothed particle hydrodynamics (SPH)-based stable techniques (particle shifting technique (PST) and interface repulsive force (IRF)) are introduced and corrected to handle the tensile instability; (c) the continuum surface tension (CST) model is discretized by the WLS when a bubble deformation in Newtonian or non-Newtonian solvent. Moreover, the CPU-based parallel algorithm is designed to reduce the computing cost in the proposed WLS-MPP model. In numerical experiments, several two-phase benchmarks are simulated to test the accuracy and stability of the proposed WLS-MPP hybrid method, including the validity of PST, IRF, and CST. Subsequently, the proposed WLS-MPP is applied to predict deformation of a bubble rising in Newtonian or non-Newtonian two-phase flow under magnetic, the influences of magnetic and density ratios on the complex deformation process are also discussed, and compared with other numerical results. The dynamic process of a bubble rising in non-Newtonian MHD solvent is more complex than that in the case of Newtonian two-phase flow or without magnetic. All the numerical results indicate that the proposed WLS-MPP hybrid model is accurate and robust to simulate generalized Newtonian two-phase MHD flows with large density ratio.

中文翻译:


一种基于多物理粒子的新型二维不可压缩广义牛顿两相 MHD 流大密度比混合模型



建立了一种精确稳定的加权最小二乘法多物理粒子基 (WLS-MPP) 混合模型来模拟不可压缩的广义牛顿两相磁流体动力学 (MHD) 流动,并首次扩展为预测具有大密度差异的剪切稀化 MHD 流中的气泡上升过程。两相 MHD 流的 WLS-MPP 混合模型的发展由以下因素推导:(a) 采用加权最小二乘 (WLS) 方案来逼近不可压缩两相 MHD 控制方程中的空间导数;(b) 引入并修正了基于平滑粒子流体动力学 (SPH) 的稳定技术中的两种不同的稳定模型(粒子偏移技术 (PST) 和界面排斥力 (IRF))来处理拉伸不稳定性;(c) 当气泡在牛顿或非牛顿溶剂中发生变形时,连续体表面张力 (CST) 模型被 WLS 离散化。此外,在所提出的 WLS-MPP 模型中,基于 CPU 的并行算法旨在降低计算成本。在数值实验中,模拟了几个两阶段基准,以测试所提出的 WLS-MPP 混合方法的准确性和稳定性,包括 PST 、 IRF 和 CST 的有效性。随后,将所提出的 WLS-MPP 应用于预测磁作用下牛顿或非牛顿两相流中气泡上升的变形,讨论了磁比和密度比对复杂变形过程的影响,并与其他数值结果进行了比较。气泡在非牛顿 MHD 溶剂中上升的动力学过程比在牛顿两相流或无磁性的情况下更复杂。 所有数值结果表明,所提出的 WLS-MPP 混合模型对广义牛顿两相 MHD 流具有准确和鲁棒性,具有较大的密度比。
更新日期:2024-11-26
down
wechat
bug