当前位置: X-MOL 学术Adv. Appl. Clifford Algebras › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
STP Method for Solving the Least Squares Special Solutions of Quaternion Matrix Equations
Advances in Applied Clifford Algebras ( IF 1.1 ) Pub Date : 2024-12-02 , DOI: 10.1007/s00006-024-01367-2
Weihua Chen, Caiqin Song

In this paper, we apply the semi-tensor product of matrices and the real vector representation of a quaternion matrix to find the least squares lower (upper) triangular Toeplitz solution of \(AX-XB=C\), \(AXB-CX^{T}D=E\) and (anti)centrosymmetric solution of \(AXB-CYD=E\). And the expressions of the least squares lower (upper) triangular Toeplitz and (anti)centrosymmetric solution for the studied equations are derived. Additionally, the necessary and sufficient conditions for the existence of solutions and general expression of the studied equations are given. Eventually, some numerical examples are provided for showing the validity and superiority of our method.



中文翻译:


求解四元数矩阵方程的最小二乘特殊解的 STP 方法



在本文中,我们应用矩阵的半张量积和四元数矩阵的实向量表示来找到 \(AX-XB=C\)、\(AXB-CX^{T}D=E\)\(AXB-CYD=E\) 的(反)中心对称解的最小二乘下(上)三角托普利茨解。并推导出所研究方程的最小二乘法、下(上)三角 Toeplitz 和(反)中心对称解的表达式。此外,还给出了解存在的必要和充分条件以及所研究方程的一般表达式。最后,提供了一些数值示例来证明我们方法的有效性和优越性。

更新日期:2024-12-02
down
wechat
bug