当前位置: X-MOL 学术Metab. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Network for knowledge Organization (NEKO): An AI knowledge mining workflow for synthetic biology research
Metabolic Engineering ( IF 6.8 ) Pub Date : 2024-11-21 , DOI: 10.1016/j.ymben.2024.11.006
Zhengyang Xiao, Himadri B. Pakrasi, Yixin Chen, Yinjie J. Tang

Large language models (LLMs) can complete general scientific question-and-answer, yet they are constrained by their pretraining cut-off dates and lack the ability to provide specific, cited scientific knowledge. Here, we introduce Network for Knowledge Organization (NEKO), a workflow that uses LLM Qwen to extract knowledge through scientific literature text mining. When user inputs a keyword of interest, NEKO can generate knowledge graphs to link bioinformation entities and produce comprehensive summaries from PubMed search. NEKO significantly enhance LLM ability and has immediate applications in daily academic tasks such as education of young scientists, literature review, paper writing, experiment planning/troubleshooting, and new ideas/hypothesis generation. We exemplified this workflow's applicability through several case studies on yeast fermentation and cyanobacterial biorefinery. NEKO's output is more informative, specific, and actionable than GPT-4's zero-shot Q&A. NEKO offers flexible, lightweight local deployment options. NEKO democratizes artificial intelligence (AI) tools, making scientific foundation model more accessible to researchers without excessive computational power.

中文翻译:


知识组织网络 (NEKO):用于合成生物学研究的 AI 知识挖掘工作流程



大型语言模型 (LLMs) 可以完成一般的科学问答,但它们受到训练前截止日期的限制,并且缺乏提供具体的、引用的科学知识的能力。在这里,我们介绍了 Network for Knowledge Organization (NEKO),这是一个使用 LLM Qwen 通过科学文献文本挖掘来提取知识的工作流程。当用户输入感兴趣的关键字时,NEKO 可以生成知识图谱以链接生物信息实体并从 PubMed 搜索中生成综合摘要。NEKO 显着增强了 LLM 能力,并立即应用于日常学术任务,例如年轻科学家的教育、文献综述、论文写作、实验计划/故障排除以及新想法/假设的产生。我们通过关于酵母发酵和蓝藻生物精炼的几个案例研究来说明该工作流程的适用性。NEKO 的输出比 GPT-4 的零样本 Q&A 更具信息性、具体性和可操作性。NEKO 提供灵活、轻量级的本地部署选项。NEKO 使人工智能 (AI) 工具大众化,使研究人员更容易访问科学基础模型,而无需过多的计算能力。
更新日期:2024-11-21
down
wechat
bug