当前位置: X-MOL 学术Comput. Methods Appl. Mech. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Nodal finite element approximation of peridynamics
Computer Methods in Applied Mechanics and Engineering ( IF 6.9 ) Pub Date : 2024-11-22 , DOI: 10.1016/j.cma.2024.117519
Prashant K. Jha, Patrick Diehl, Robert Lipton

This work considers the nodal finite element approximation of peridynamics, in which the nodal displacements satisfy the peridynamics equation at each mesh node. For the nonlinear bond-based peridynamics model, it is shown that, under the suitable assumptions on an exact solution, the discretized solution associated with the central-in-time and nodal finite element discretization converges to a solution in the L2 norm at the rate C1Δt+C2h2/ϵ2. Here, Δt, h, and ϵ are time step size, mesh size, and the size of the horizon or nonlocal length scale, respectively. Constants C1 and C2 are independent of h and Δt and depend on norms of the solution and nonlocal length scale. Several numerical examples involving pre-crack, void, and notch are considered, and the efficacy of the proposed nodal finite element discretization is analyzed.

中文翻译:


近场动力学的节点有限元近似



这项工作考虑了近场动力学的节点有限元近似,其中节点位移满足每个网格节点的近场动力学方程。对于基于非线性键的近场动力学模型,结果表明,在对精确解的适当假设下,与中心时间和节点有限元离散化相关的离散解以 C1Δt+C2h2/ε2 的速率收敛到 L2 范数中的解。其中,Δt、h 和 ε 分别是时间步长、网格大小以及水平或非局部长度尺度的大小。常数 C1 和 C2 与 h 和 Δt 无关,取决于解的范数和非局部长度尺度。考虑了几个涉及预裂纹、空隙和缺口的数值示例,并分析了所提出的节点有限元离散化的有效性。
更新日期:2024-11-22
down
wechat
bug