当前位置:
X-MOL 学术
›
Energy Convers. Manag.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Three-dimensional simulation of high temperature ion-pair PEM fuel cell integrated with agglomerate sub-model of cathode catalyst layer
Energy Conversion and Management ( IF 9.9 ) Pub Date : 2024-11-29 , DOI: 10.1016/j.enconman.2024.119289 Utsav Raj Aryal, Bjorn Hasa, Gaohua Zhu
Energy Conversion and Management ( IF 9.9 ) Pub Date : 2024-11-29 , DOI: 10.1016/j.enconman.2024.119289 Utsav Raj Aryal, Bjorn Hasa, Gaohua Zhu
A steady-state, isothermal simulation of a 3D high temperature (HT) ion-pair proton exchange membrane fuel cell (PEMFC) model, utilizing a quaternary ammonium biphosphate ion-pair membrane, was conducted in COMSOL Multiphysics for the first time. The performance of the fuel cell was analyzed, in terms of polarization curves, molar gas concentrations, and overpotential breakdown to determine mechanism resulting in loss. Experimental validation was performed for both non-protonated and protonated ion-pair fuel cells. The homogeneous catalyst layer model overestimated the performance at low catalyst loading by up to 32%. Hence, this study utilized an agglomerate sub-model of the cathode catalyst layer, to accurately capture the effect of catalyst loading on fuel cell performance. Additionally, a graded catalyst layer design was proposed to improve the catalyst utilization leading to high fuel cell performance. It was found that a graded catalyst layer with higher loading facing the membrane side improved the performance by 5.5% over uniformly loaded catalyst layer. Furthermore, the influence of operating conditions like temperature and back pressure is highlighted. Overall, this study offers a comprehensive approach to understanding HT ion-pair PEMFC operation and optimizing the catalyst structure.
中文翻译:
高温离子对 PEM 燃料电池与正极催化剂层团聚体子模型集成的三维仿真
COMSOL Multiphysics 首次在 COMSOL Multiphysics 中对 3D 高温 (HT) 离子对质子交换膜燃料电池 (PEMFC) 模型进行了稳态等温仿真,该模型利用季铵氢二磷酸盐离子对膜。根据极化曲线、摩尔气体浓度和过电位击穿分析燃料电池的性能,以确定导致损耗的机制。对非质子化和质子化离子对燃料电池进行了实验验证。均相催化剂层模型高估了低催化剂负载量下的性能高达 32%。因此,本研究利用阴极催化剂层的团聚体子模型,准确捕捉催化剂负载对燃料电池性能的影响。此外,还提出了一种分级催化剂层设计,以提高催化剂利用率,从而提高燃料电池性能。结果发现,与均匀负载的催化剂层相比,面向膜侧的更高负载的分级催化剂层的性能提高了 5.5%。此外,还强调了温度和背压等操作条件的影响。总体而言,本研究为了解 HT 离子对 PEMFC 操作和优化催化剂结构提供了一种全面的方法。
更新日期:2024-11-29
中文翻译:
高温离子对 PEM 燃料电池与正极催化剂层团聚体子模型集成的三维仿真
COMSOL Multiphysics 首次在 COMSOL Multiphysics 中对 3D 高温 (HT) 离子对质子交换膜燃料电池 (PEMFC) 模型进行了稳态等温仿真,该模型利用季铵氢二磷酸盐离子对膜。根据极化曲线、摩尔气体浓度和过电位击穿分析燃料电池的性能,以确定导致损耗的机制。对非质子化和质子化离子对燃料电池进行了实验验证。均相催化剂层模型高估了低催化剂负载量下的性能高达 32%。因此,本研究利用阴极催化剂层的团聚体子模型,准确捕捉催化剂负载对燃料电池性能的影响。此外,还提出了一种分级催化剂层设计,以提高催化剂利用率,从而提高燃料电池性能。结果发现,与均匀负载的催化剂层相比,面向膜侧的更高负载的分级催化剂层的性能提高了 5.5%。此外,还强调了温度和背压等操作条件的影响。总体而言,本研究为了解 HT 离子对 PEMFC 操作和优化催化剂结构提供了一种全面的方法。