当前位置:
X-MOL 学术
›
Tunn. Undergr. Space Technol.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Deformation failure mechanism and stability-control technology of deep layered clastic-rock roadway under dynamic disturbance
Tunnelling and Underground Space Technology ( IF 6.7 ) Pub Date : 2024-11-28 , DOI: 10.1016/j.tust.2024.106255 Qinggang Chen, Yujun Zuo, Lujing Zheng
Tunnelling and Underground Space Technology ( IF 6.7 ) Pub Date : 2024-11-28 , DOI: 10.1016/j.tust.2024.106255 Qinggang Chen, Yujun Zuo, Lujing Zheng
The deep layered clastic-rock roadways (LCRRs) of the gold mines in southwestern Guizhou, China, are adversely affected by dynamic disturbances such as blasting and mechanical operations, yielding poor roadway stability and unsatisfactory control effectiveness. This study investigates the deformation failure mechanism of a deep LCRR under dynamic disturbance and proposes and validates an optimised roadway stability-control scheme. Through on-site investigation and theoretical analysis, the main roadway stability-control factors are determined; that is, the mudstone-layer thickness, roadway buried depth, and dynamic-load amplitude. Similar simulation experiments reveal the deformation failure characteristics and strain-field evolution laws of similar models. Numerical analysis shows that increasing buried depth most severely affects the two sides of the roadway, whereas the dynamic-load amplitude determines the disturbance duration. Moreover, with increasing mudstone-layer thickness, the overall impact of the dynamic disturbance on the surrounding rock first intensifies and then diminishes. The results of the similar simulation experiment and numerical analyses are highly consistent, indicating a danger zone on the roadway roof. The roadway deformation and failure mechanisms are revealed, and a more rational technical solution for roadway stability control is proposed and implemented on-site. Analysis and monitoring results reveal a relative reduction in roadway surface displacement exceeding 30 %, and improvement of the overall roadway stability. The findings constitute a valuable reference and guide for roadway stability control under such geological conditions.
中文翻译:
动力扰动作用下深层碎屑岩巷道变形破坏机理及稳控技术
贵州西南部金矿深层状碎屑岩巷道 (LCRRs) 受爆破、机械作业等动力扰动的不利影响,巷道稳定性差,控制效果不理想。该文研究了深部 LCRR 在动态扰动下的变形破坏机理,提出并验证了一种优化的道路稳定性控制方案。通过现场调查和理论分析,确定了主要的道路稳定性控制因素;即泥岩层厚度、巷道埋深和动载荷幅值。类似的仿真实验揭示了类似模型的变形破坏特性和应变场演化规律。数值分析表明,埋深的增加对巷道两侧的影响最为严重,而动载荷幅值决定了扰动持续时间。此外,随着泥岩层厚度的增加,动力扰动对周围岩石的整体影响首先增强,然后减弱。类似的仿真实验和数值分析的结果高度一致,表明车行道顶部存在危险区域。揭示了道路变形和破坏机制,提出了更合理的道路稳定性控制技术方案,并在现场实施了该方法。分析和监测结果表明,道路表面位移相对减少超过 30%,整体道路稳定性得到改善。研究结果为该地质条件下的道路稳定性控制提供了有价值的参考和指导。
更新日期:2024-11-28
中文翻译:
动力扰动作用下深层碎屑岩巷道变形破坏机理及稳控技术
贵州西南部金矿深层状碎屑岩巷道 (LCRRs) 受爆破、机械作业等动力扰动的不利影响,巷道稳定性差,控制效果不理想。该文研究了深部 LCRR 在动态扰动下的变形破坏机理,提出并验证了一种优化的道路稳定性控制方案。通过现场调查和理论分析,确定了主要的道路稳定性控制因素;即泥岩层厚度、巷道埋深和动载荷幅值。类似的仿真实验揭示了类似模型的变形破坏特性和应变场演化规律。数值分析表明,埋深的增加对巷道两侧的影响最为严重,而动载荷幅值决定了扰动持续时间。此外,随着泥岩层厚度的增加,动力扰动对周围岩石的整体影响首先增强,然后减弱。类似的仿真实验和数值分析的结果高度一致,表明车行道顶部存在危险区域。揭示了道路变形和破坏机制,提出了更合理的道路稳定性控制技术方案,并在现场实施了该方法。分析和监测结果表明,道路表面位移相对减少超过 30%,整体道路稳定性得到改善。研究结果为该地质条件下的道路稳定性控制提供了有价值的参考和指导。