当前位置: X-MOL 学术Autom. Constr. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Intelligent dynamic control of shield parameters using a hybrid algorithm and digital twin platform
Automation in Construction ( IF 9.6 ) Pub Date : 2024-11-22 , DOI: 10.1016/j.autcon.2024.105882
Yuan Cao, Shifan Li, Geoffrey Qiping Shen, Hongyu Chen, Yang Liu

This paper presents a digital twin (DT) platform integrated with an online optimization algorithm that combines Bayesian Optimization (BO), Categorical Boosting (CatBoost), and the Nondominated Sorting Genetic Algorithm (NSGA)-III. The platform enables multi-objective dynamic optimization of shield parameters under varying geological conditions. Using the Wuhan Metro as a case study, the effectiveness of the method is validated. The results demonstrate that: (1) the DT model accurately estimates shield machine performance, with an R2 of no less than 0.957 on the test set across three geological conditions; (2) the online optimization significantly enhances shield machine performance, with a comprehensive optimization improvement of over 25 % across all conditions; (3) comparison of the constructed algorithm's accuracy, along with Shapley additive explanations, confirms the accuracy, interpretability, and universality of the proposed algorithm.

中文翻译:


使用混合算法和数字孪生平台对盾牌参数进行智能动态控制



本文提出了一个数字孪生 (DT) 平台,该平台与在线优化算法集成,该算法结合了贝叶斯优化 (BO)、分类提升 (CatBoost) 和非支配排序遗传算法 (NSGA)-III。该平台支持在不同地质条件下对盾构参数进行多目标动态优化。以武汉地铁为例,验证了该方法的有效性。结果表明:(1)DT模型准确估计了盾构机的性能,在3种地质条件下,测试集上的R2不小于0.957;(2) 在线优化显著提高了盾构机的性能,在所有条件下的综合优化提高了 25% 以上;(3) 对构建算法的准确性进行比较,以及 Shapley 加法解释,证实了所提算法的准确性、可解释性和普遍性。
更新日期:2024-11-22
down
wechat
bug