当前位置: X-MOL 学术Crit. Rev. Environ. Sci. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Integrating sensor data and machine learning to advance the science and management of river carbon emissions
Critical Reviews in Environmental Science and Technology ( IF 11.4 ) Pub Date : 2024-11-14 , DOI: 10.1080/10643389.2024.2429912
Lee E. Brown, Taylor Maavara, Jiangwei Zhang, Xiaohui Chen, Megan Klaar, Felicia Orah Moshe, Elad Ben-Zur, Shaked Stein, Richard Grayson, Laura Carter, Elad Levintal, Gideon Gal, Pazit Ziv, Frank Tarkowski, Devanshi Pathak, Kieran Khamis, José Barquín, Hemma Philamore, Misael Sebastián Gradilla-Hernández, Shai Arnon

Estimates of greenhouse gas emissions from river networks remain highly uncertain in many parts of the world, leading to gaps in global inventories and preventing effective management. In-situ sensor technology advances, coupled with mobile sensors on robotic sensor-deployment platforms, will allow more effective data acquisition to monitor carbon cycle processes influencing river CO2 and CH4 emissions. However, if countries are to respond effectively to global climate change threats, sensors must be installed more strategically to ensure that they can be used to directly evaluate a range of management responses across river networks. We evaluate how sensors and analytical advances can be integrated into networks that are adaptable to monitor a range of catchment processes and human modifications. The most promising data analytics that provide processing, modeling, and visualizing approaches for high-resolution river system data are assessed, illustrating how multi-sensor data coupled with machine learning solutions can improve both proactive (e.g. forecasting) and reactive (e.g. alerts) strategies to better manage river catchment carbon emissions.

中文翻译:


整合传感器数据和机器学习,推动河流碳排放的科学和管理



在世界许多地方,河流网络温室气体排放的估计仍然高度不确定,导致全球清单出现缺口,阻碍了有效管理。原位传感器技术的进步,加上机器人传感器部署平台上的移动传感器,将允许更有效的数据采集,以监测影响河流 CO2 和 CH4 排放的碳循环过程。然而,如果各国要有效应对全球气候变化威胁,就必须更具战略性地安装传感器,以确保它们可用于直接评估整个河流网络的一系列管理响应。我们评估如何将传感器和分析进展集成到网络中,以适应监控一系列集水过程和人工修改。评估了为高分辨率河流系统数据提供处理、建模和可视化方法的最有前途的数据分析,说明了多传感器数据与机器学习解决方案相结合如何改进主动(例如预测)和被动(例如警报)策略,以更好地管理河流集水区的碳排放。
更新日期:2024-11-14
down
wechat
bug