npj Digital Medicine ( IF 12.4 ) Pub Date : 2024-11-29 , DOI: 10.1038/s41746-024-01321-3 Frances J. Griffith, Garrett I. Ash, Madilyn Augustine, Leah Latimer, Naomi Verne, Nancy S. Redeker, Stephanie S. O’Malley, Kelly S. DeMartini, Lisa M. Fucito
We used natural language processing (NLP) in convergent mixed methods to evaluate young adults’ experiences with Call it a Night (CIAN), a digital personalized feedback and coaching sleep-alcohol intervention. Young adults with heavy drinking (N = 120) were randomized to CIAN or controls (A + SM: web-based advice + self-monitoring or A: advice; clinicaltrials.gov, 8/31/18, #NCT03658954). Most CIAN participants (72.0%) preferred coaching to control interventions. Control participants found advice more helpful than CIAN participants (X2 = 27.34, p < 0.001). Most participants were interested in sleep factors besides alcohol and appreciated increased awareness through monitoring. NLP corroborated generally positive sentiments (M = 15.07(10.54)) and added critical insight that sleep (40%), not alcohol use (12%), was a main participant motivator. All groups had high adherence, satisfaction, and feasibility. CIAN (Δ = 0.48, p = 0.008) and A + SM (Δ = 0.55, p < 0.001) had higher reported effectiveness than A (F(2, 115) = 8.45, p < 0.001). Digital sleep-alcohol interventions are acceptable, and improving sleep and wellness may be important motivations for young adults.
中文翻译:
年轻人数字睡眠-酒精干预混合方法评估中的自然语言处理
我们在收敛混合方法中使用自然语言处理 (NLP) 来评估年轻人对 Call it a Night (CIAN) 的体验,这是一种数字个性化反馈和指导睡眠酒精干预。酗酒的年轻人 (N = 120) 被随机分配到 CIAN 或对照组 (A + SM:基于网络的建议 + 自我监测或 A:建议;clinicaltrials.gov,8/31/18,#NCT03658954)。大多数 CIAN 参与者 (72.0%) 更喜欢教练来控制干预措施。对照组参与者发现建议比 CIAN 参与者更有帮助 (X2 = 27.34,p < 0.001)。大多数参与者对酒精以外的睡眠因素感兴趣,并赞赏通过监测提高意识。NLP 证实了普遍的积极情绪 (M = 15.07(10.54)),并增加了关键见解,即睡眠 (40%),而不是饮酒 (12%),是参与者的主要动机。所有组均具有较高的依从性、满意度和可行性。CIAN (Δ = 0.48,p = 0.008) 和 A + SM (Δ = 0.55,p < 0.001) 报告的有效性高于 A (F(2, 115) = 8.45,p < 0.001)。 数字睡眠酒精干预是可以接受的,改善睡眠和健康可能是年轻人的重要动机。