当前位置: X-MOL 学术Phys. Rev. Lett. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
From Chaos to Integrability in Double Scaled Sachdev-Ye-Kitaev Model via a Chord Path Integral
Physical Review Letters ( IF 8.1 ) Pub Date : 2024-11-26 , DOI: 10.1103/physrevlett.133.221602
Micha Berkooz, Nadav Brukner, Yiyang Jia, Ohad Mamroud

We study thermodynamic phase transitions between integrable and chaotic dynamics. We do so by analyzing models that interpolate between the chaotic double scaled Sachdev-Ye-Kitaev (SYK) and the integrable p-spin systems, in a limit where they are described by chord diagrams. We develop a path integral formalism by coarse graining over the diagrams, which we use to argue that the system has two distinct phases: one is continuously connected to the chaotic system, and the other to the integrable. They are separated by a line of first order transition that ends at some finite temperature. Published by the American Physical Society 2024

中文翻译:


通过和弦路径积分在双缩放 Sachdev-Ye-Kitaev 模型中从混沌到可积性



我们研究可积动力学和混沌动力学之间的热力学相变。我们通过分析在混沌双缩放 Sachdev-Ye-Kitaev (SYK) 和可积 p-spin 系统之间插值的模型来做到这一点,在弦图描述它们的极限内。我们通过对图进行粗粒度化来发展一种路径积分形式主义,我们用它来论证系统有两个不同的阶段:一个持续连接到混沌系统,另一个连接到可积系统。它们由一条在某个有限温度下结束的一阶跃迁线分隔。 美国物理学会 2024 年出版
更新日期:2024-11-26
down
wechat
bug