当前位置:
X-MOL 学术
›
Remote Sens. Environ.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
An advanced dorsiventral leaf radiative transfer model for simulating multi-angular and spectral reflection: Considering asymmetry of leaf internal and surface structure
Remote Sensing of Environment ( IF 11.1 ) Pub Date : 2024-11-30 , DOI: 10.1016/j.rse.2024.114531
Dongjie Ran, Zhongqiu Sun, Shan Lu, Kenji Omasa
Remote Sensing of Environment ( IF 11.1 ) Pub Date : 2024-11-30 , DOI: 10.1016/j.rse.2024.114531
Dongjie Ran, Zhongqiu Sun, Shan Lu, Kenji Omasa
Understanding the optical properties of dorsiventral leaves and quantifying leaf biochemical traits through physical models are important for interpreting canopy radiative transfer and monitoring plant growth. Previous models, such as the dorsiventral leaf model (DLM), have effectively accounted for the inner asymmetry of the leaf but neglected the asymmetry of surface structures between the upper and lower epidermis. In this study, we found marked differences in bidirectional reflectance factors (BRF) between the adaxial and abaxial surfaces of leaves under multi-angular measurements due to surface structural distinctions. To address this asymmetry in both internal and surface leaf structures, we subsequently proposed an advanced DLM model (MADLM) for simulating both multi-angular and spectral BRF of two leaf sides, linking the angular reflection of leaf adaxial and abaxial sides to surface structural parameters (roughness and refractive index) based on microfacet theory. Results show that MADLM accurately simulates multi-angular and spectral BRF for both sides of dorsiventral leaves, and yields satisfactory retrieval accuracy of leaf traits from all observation geometries. For close-range hyperspectral imaging applications, we further introduced a simplified version, sMADLM, which characterizes the surface reflection of two leaf sides in terms of the product of a leaf-side dependent parameter and the wavelength-dependent Fresnel factor. The sMADLM improves the mapping accuracy of leaf biochemical traits by effectively reducing the surface reflection effects in dorsiventral leaves. The MADLM and sMADLM deepen our understanding of the optical properties of dorsiventral leaves and provide practical methods for retrieving leaf biochemical traits via optical remote sensing.
中文翻译:
一种用于模拟多角度和光谱反射的先进背腹叶辐射传输模型:考虑叶片内部和表面结构的不对称性
了解背腹叶的光学特性并通过物理模型量化叶片生化特性对于解释冠层辐射传递和监测植物生长非常重要。以前的模型,如背腹叶模型 (DLM),有效地解释了叶子的内部不对称性,但忽略了上下表皮之间表面结构的不对称性。在这项研究中,我们发现由于表面结构差异,在多角度测量下叶片近轴和背面之间的双向反射因子 (BRF) 存在显着差异。为了解决内部和表面叶结构中的这种不对称性,我们随后提出了一种先进的 DLM 模型 (MADLM),用于模拟两个叶面的多角度和光谱 BRF,将叶近轴和沿轴面的角度反射与基于微面理论的表面结构参数(粗糙度和折射率)联系起来。结果表明,MADLM 准确模拟了背腹叶两侧的多角度和光谱 BRF,并获得了令人满意的叶片性状检索精度。对于近距离高光谱成像应用,我们进一步引入了一个简化版本 sMADLM,它根据叶侧相关参数和波长相关菲涅耳因子的乘积来表征两个叶面的表面反射。sMADLM 通过有效降低背腹叶的表面反射效应,提高了叶片生化性状的映射精度。MADLM 和 sMADLM 加深了我们对背腹叶光学特性的理解,并为通过光学遥感检索叶片生化特性提供了实用方法。
更新日期:2024-11-30
中文翻译:
一种用于模拟多角度和光谱反射的先进背腹叶辐射传输模型:考虑叶片内部和表面结构的不对称性
了解背腹叶的光学特性并通过物理模型量化叶片生化特性对于解释冠层辐射传递和监测植物生长非常重要。以前的模型,如背腹叶模型 (DLM),有效地解释了叶子的内部不对称性,但忽略了上下表皮之间表面结构的不对称性。在这项研究中,我们发现由于表面结构差异,在多角度测量下叶片近轴和背面之间的双向反射因子 (BRF) 存在显着差异。为了解决内部和表面叶结构中的这种不对称性,我们随后提出了一种先进的 DLM 模型 (MADLM),用于模拟两个叶面的多角度和光谱 BRF,将叶近轴和沿轴面的角度反射与基于微面理论的表面结构参数(粗糙度和折射率)联系起来。结果表明,MADLM 准确模拟了背腹叶两侧的多角度和光谱 BRF,并获得了令人满意的叶片性状检索精度。对于近距离高光谱成像应用,我们进一步引入了一个简化版本 sMADLM,它根据叶侧相关参数和波长相关菲涅耳因子的乘积来表征两个叶面的表面反射。sMADLM 通过有效降低背腹叶的表面反射效应,提高了叶片生化性状的映射精度。MADLM 和 sMADLM 加深了我们对背腹叶光学特性的理解,并为通过光学遥感检索叶片生化特性提供了实用方法。