当前位置:
X-MOL 学术
›
Energy Environ. Sci.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
A versatile energy-level-tunable hole-transport layer for multi-composition inverted perovskite solar cells
Energy & Environmental Science ( IF 32.4 ) Pub Date : 2024-11-30 , DOI: 10.1039/d4ee03208j Wenbo Peng, Yong Zhang, Xianyong Zhou, Jiawen Wu, Deng Wang, Geping Qu, Jie Zeng, Yintai Xu, Bo Jiang, Peide Zhu, Yifan Du, Zhitong Li, Xia Lei, Zhixin Liu, Lei Yan, Xingzhu Wang, Baomin Xu
Energy & Environmental Science ( IF 32.4 ) Pub Date : 2024-11-30 , DOI: 10.1039/d4ee03208j Wenbo Peng, Yong Zhang, Xianyong Zhou, Jiawen Wu, Deng Wang, Geping Qu, Jie Zeng, Yintai Xu, Bo Jiang, Peide Zhu, Yifan Du, Zhitong Li, Xia Lei, Zhixin Liu, Lei Yan, Xingzhu Wang, Baomin Xu
Optimization of buried interfaces is crucial for achieving high efficiency in inverted perovskite solar cells (PSCs), owing to their role in facilitating hole transport and passivating the buried interface defects. While self-assembled monolayers (SAMs) are commonly employed for this purpose, the inherent limitations of single SAMs, such as fixed material structure and energy levels, hinder their adaptability and further efficiency enhancement across diverse compositions. In this study, we present an effective strategy of blending with SAMs with varying dipole moments to modulate the energy levels and hole transport properties, leading to enhanced charge transport characteristics and suppression of energy losses at buried interfaces. The intrinsic mechanisms of energy level modulation on the device performance are further investigated through theoretical simulations. Ultimately, small-area (0.0736 cm2) inverted PSCs with a 1.56 eV bandgap achieve a champion power conversion efficiency (PCE) of 26.28% (certified efficiency of 25.80%), while large-area devices (1.1 cm2) demonstrate an efficiency of 24.65%. Moreover, the energy-level-tunable SAM materials exhibit applicability across various PSCs with different preparation methods and bandgaps, achieving efficiencies of 24.44% for anti-solvent-free (1.56 eV) and 19.03% for wide-bandgap (1.85 eV) perovskite solar cells, respectively. Notably, devices employing these SAM materials demonstrate excellent photostability, maintaining over 95% of initial efficiency after 1000 hours of operation at the maximum power point (MPP).
中文翻译:
用于多成分倒置钙钛矿太阳能电池的多功能能级可调空穴传输层
埋入界面的优化对于在倒置钙钛矿太阳能电池 (PSC) 中实现高效率至关重要,因为它们在促进空穴传输和钝化埋入界面缺陷方面发挥着作用。虽然自组装单层 (SAM) 通常用于此目的,但单个 SAM 的固有局限性,例如固定的材料结构和能级,阻碍了它们在不同成分中的适应性和进一步提高效率。在这项研究中,我们提出了一种与具有不同偶极矩的 SAM 混合以调节能级和空穴传输特性的有效策略,从而增强电荷传输特性并抑制埋藏界面的能量损失。通过理论仿真进一步研究了能级调制对器件性能的内在机制。最终,带隙为 1.56 eV 的小面积 (0.0736 cm2) 反向 PSC 实现了 26.28% 的冠军功率转换效率 (PCE)(认证效率为 25.80%),而大面积器件 (1.1 cm2) 的效率为 24.65%。此外,能级可调的 SAM 材料在不同制备方法和带隙的各种 PSC 中表现出适用性,对无溶剂 (1.56 eV) 和宽禁带 (1.85 eV) 钙钛矿太阳能电池的效率分别为 24.44% 和 19.03%。值得注意的是,采用这些 SAM 材料的器件表现出优异的光稳定性,在最大功率点 (MPP) 下运行 1000 小时后仍能保持超过 95% 的初始效率。
更新日期:2024-11-30
中文翻译:
用于多成分倒置钙钛矿太阳能电池的多功能能级可调空穴传输层
埋入界面的优化对于在倒置钙钛矿太阳能电池 (PSC) 中实现高效率至关重要,因为它们在促进空穴传输和钝化埋入界面缺陷方面发挥着作用。虽然自组装单层 (SAM) 通常用于此目的,但单个 SAM 的固有局限性,例如固定的材料结构和能级,阻碍了它们在不同成分中的适应性和进一步提高效率。在这项研究中,我们提出了一种与具有不同偶极矩的 SAM 混合以调节能级和空穴传输特性的有效策略,从而增强电荷传输特性并抑制埋藏界面的能量损失。通过理论仿真进一步研究了能级调制对器件性能的内在机制。最终,带隙为 1.56 eV 的小面积 (0.0736 cm2) 反向 PSC 实现了 26.28% 的冠军功率转换效率 (PCE)(认证效率为 25.80%),而大面积器件 (1.1 cm2) 的效率为 24.65%。此外,能级可调的 SAM 材料在不同制备方法和带隙的各种 PSC 中表现出适用性,对无溶剂 (1.56 eV) 和宽禁带 (1.85 eV) 钙钛矿太阳能电池的效率分别为 24.44% 和 19.03%。值得注意的是,采用这些 SAM 材料的器件表现出优异的光稳定性,在最大功率点 (MPP) 下运行 1000 小时后仍能保持超过 95% 的初始效率。