当前位置:
X-MOL 学术
›
Energy Environ. Sci.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Deciphering the dynamic solid–liquid interphase for energetic high-mass-loading energy storage
Energy & Environmental Science ( IF 32.4 ) Pub Date : 2024-11-30 , DOI: 10.1039/d4ee03303e Jinxin Wang, Wei Guo, Mingming Sun, Geng Zhang, Yang Meng, Qiuyu Zhang
Energy & Environmental Science ( IF 32.4 ) Pub Date : 2024-11-30 , DOI: 10.1039/d4ee03303e Jinxin Wang, Wei Guo, Mingming Sun, Geng Zhang, Yang Meng, Qiuyu Zhang
Aqueous pseudocapacitive storage has shown promise for future energy applications, but it suffers from a single reaction pathway and mechanism that restrain performance breakthroughs, especially under commercial high-mass-loading conditions. Herein, using MnO2 as a pseudocapacitive storage material, we tailored a reversible pseudocapacitive-type electrode/electrolyte interphase (PEI) by refining the cationic environment, which broke the limitation of MnO2 to unlock an energetic dual-ion storage mechanism. Theoretical calculations demonstrated that the engineered dynamic PEI elevated the removal energy of active Mn species to stabilize dual-cation storage and, more importantly, provided highly available MnO2/PEI heterointerface spaces to accommodate more charges. We unveiled that the exceptional heterointerface region with considerable charge redistribution enabled a significantly reduced ion-migration energy barrier compared with that of the pure MnO2 interlayer, contributing to fast “multi-processing” storage of dual carriers. As a proof-of-concept, the tailored mechanism enabled robust stability with 92% capacitance retention after 25 000 cycles. Besides, an appealing areal capacitance of 11.1 F cm−2 was demonstrated under a high mass loading of 27.4 mg cm−2. Our findings signify a paradigm shift in aqueous pseudocapacitive chemistry and offer insights into dynamic microenvironment regulation for building advanced energy storage devices.
中文翻译:
破译高能高质量负载储能的动态固液界面
水性伪电容存储已显示出未来能源应用的前景,但它受到单一反应途径和机制的影响,这限制了性能突破,尤其是在商业高质量负载条件下。本文以 MnO2 为伪电容存储材料,通过精炼阳离子环境定制了一种可逆的伪电容型电极/电解质界面 (PEI),打破了 MnO2 的限制,解锁了高能双离子存储机制。理论计算表明,工程动态 PEI 提高了活性 Mn 物质的去除能,以稳定双阳离子储存,更重要的是,提供了高度可用的 MnO2/PEI 异质界面空间以容纳更多电荷。我们揭示了与纯 MnO2 夹层相比,具有大量电荷再分布的特殊异质界面区域能够显着降低离子迁移能垒,有助于双载流子的快速“多处理”存储。作为概念验证,定制的机制在 25000 次循环后实现了稳健的稳定性和 92% 的电容保持率。此外,在 27.4 mg cm-2 的高质量负载下,证明了 11.1 F cm-2 的有吸引力的面电容。我们的发现标志着水性伪电容化学的范式转变,并为构建先进储能器件的动态微环境调节提供了见解。
更新日期:2024-11-30
中文翻译:
破译高能高质量负载储能的动态固液界面
水性伪电容存储已显示出未来能源应用的前景,但它受到单一反应途径和机制的影响,这限制了性能突破,尤其是在商业高质量负载条件下。本文以 MnO2 为伪电容存储材料,通过精炼阳离子环境定制了一种可逆的伪电容型电极/电解质界面 (PEI),打破了 MnO2 的限制,解锁了高能双离子存储机制。理论计算表明,工程动态 PEI 提高了活性 Mn 物质的去除能,以稳定双阳离子储存,更重要的是,提供了高度可用的 MnO2/PEI 异质界面空间以容纳更多电荷。我们揭示了与纯 MnO2 夹层相比,具有大量电荷再分布的特殊异质界面区域能够显着降低离子迁移能垒,有助于双载流子的快速“多处理”存储。作为概念验证,定制的机制在 25000 次循环后实现了稳健的稳定性和 92% 的电容保持率。此外,在 27.4 mg cm-2 的高质量负载下,证明了 11.1 F cm-2 的有吸引力的面电容。我们的发现标志着水性伪电容化学的范式转变,并为构建先进储能器件的动态微环境调节提供了见解。