当前位置:
X-MOL 学术
›
J. Mater. Sci. Technol.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Breaking the linear scaling relationship in BN-supported metal catalysts for efficient CO2RR towards C1 and C2 products
Journal of Materials Science & Technology ( IF 11.2 ) Pub Date : 2024-11-30 , DOI: 10.1016/j.jmst.2024.11.008 Dongyue Gao, Li Ma, Yongli Yang, Zhe Liu, Yadong Yu, Yi Fang, Yang Huang, Chengchun Tang, Zhonglu Guo
Journal of Materials Science & Technology ( IF 11.2 ) Pub Date : 2024-11-30 , DOI: 10.1016/j.jmst.2024.11.008 Dongyue Gao, Li Ma, Yongli Yang, Zhe Liu, Yadong Yu, Yi Fang, Yang Huang, Chengchun Tang, Zhonglu Guo
![]() |
The catalytic activity and selectivity of CO2 reduction reaction (CO2 RR) towards C1 and C2 products are fundamentally restricted by the inherent linear scaling relationship among the adsorption-free energies of intermediates. To face this challenge, we have proposed a novel multifunctional M1 M2 @BN electrocatalysts to break the linear scaling relationships in CO2 RR and efficiently obtain C1 and C2 products. Our results reveal that the optimal limiting potential is increased from −0.58 V for M@BN to −0.39 V for M1 M2 @BN, which achieves ultrahigh activity of CO2 RR. Further mechanism analysis illuminates that M1 M2 @BN can selectivity modulate the adsorption strength of OCHO* and OCH2 O*/OCHOH*, breaking the linear scaling relationship of adsorption-free energies of key intermediates to achieve the enhanced catalytic activity. Notably, the sufficient active sites on M1 M2 @BN electrocatalysts can promote the sluggish C–C coupling by capturing two CO intermediates simultaneously, further generating high-value multi-carbon (CH2 CH2 OH) products. Meanwhile, the thermodynamic stability of M1 M2 @BN has been demonstrated by ab initio molecular dynamics (AIMD) simulations, which shows the feasibility of commercial application in CO2 RR. Our findings provide a novel strategy to modulate the binding strength of intermediates and develop the design of efficient multi-active-site CO2 RR electrocatalysts.
中文翻译:
打破 BN 负载金属催化剂中的线性结垢关系,实现对 C1 和 C2 产物的高效 CO2RR
CO2 还原反应 (CO2RR) 对 C1 和 C2 产物的催化活性和选择性从根本上受到中间体无吸附能之间固有的线性缩放关系的限制。为了应对这一挑战,我们提出了一种新型多功能M1M2@BN电催化剂,以打破 CO2RR 中的线性缩放关系,高效获得 C1 和 C2 产物。我们的结果表明,最佳极限电位从 M@BN 的 -0.58 V 增加到M1M2@BN的 -0.39 V,从而实现了 CO2RR 的超高活性。进一步的机理分析表明,M1M2@BN 可以选择性调节 OCHO* 和 OCH2O*/OCHOH* 的吸附强度,打破关键中间体的无吸附能的线性缩放关系,以实现增强的催化活性。值得注意的是,M1M2@BN电催化剂上足够的活性位点可以通过同时捕获两种 CO 中间体来促进缓慢的 C-C 偶联,从而进一步产生高价值的多碳 (CH2CH2OH) 产品。同时,M1M2@BN的热力学稳定性已通过从头计算的分子动力学 (AIMD) 模拟得到证明,这显示了在 CO2RR 中商业应用的可行性。我们的研究结果提供了一种新的策略来调节中间体的结合强度,并开发高效的多活性位点 CO2RR 电催化剂的设计。
更新日期:2024-11-30
中文翻译:

打破 BN 负载金属催化剂中的线性结垢关系,实现对 C1 和 C2 产物的高效 CO2RR
CO2 还原反应 (CO2RR) 对 C1 和 C2 产物的催化活性和选择性从根本上受到中间体无吸附能之间固有的线性缩放关系的限制。为了应对这一挑战,我们提出了一种新型多功能M1M2@BN电催化剂,以打破 CO2RR 中的线性缩放关系,高效获得 C1 和 C2 产物。我们的结果表明,最佳极限电位从 M@BN 的 -0.58 V 增加到M1M2@BN的 -0.39 V,从而实现了 CO2RR 的超高活性。进一步的机理分析表明,M1M2@BN 可以选择性调节 OCHO* 和 OCH2O*/OCHOH* 的吸附强度,打破关键中间体的无吸附能的线性缩放关系,以实现增强的催化活性。值得注意的是,M1M2@BN电催化剂上足够的活性位点可以通过同时捕获两种 CO 中间体来促进缓慢的 C-C 偶联,从而进一步产生高价值的多碳 (CH2CH2OH) 产品。同时,M1M2@BN的热力学稳定性已通过从头计算的分子动力学 (AIMD) 模拟得到证明,这显示了在 CO2RR 中商业应用的可行性。我们的研究结果提供了一种新的策略来调节中间体的结合强度,并开发高效的多活性位点 CO2RR 电催化剂的设计。