当前位置:
X-MOL 学术
›
J. Mater. Sci. Technol.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Recycling glass fiber-reinforced epoxy resin waste via electroless plating magnetic particles and carbonizing for microwave absorption
Journal of Materials Science & Technology ( IF 11.2 ) Pub Date : 2024-11-30 , DOI: 10.1016/j.jmst.2024.11.009 Jiang-Tao Liu, Yu-Chen Zheng, Xin Hou, Xue-Rong Feng, Ke Jiang, Shan Huang, Ming Wang
Journal of Materials Science & Technology ( IF 11.2 ) Pub Date : 2024-11-30 , DOI: 10.1016/j.jmst.2024.11.009 Jiang-Tao Liu, Yu-Chen Zheng, Xin Hou, Xue-Rong Feng, Ke Jiang, Shan Huang, Ming Wang
Plastic waste recycling is a focal point in today's sustainable development efforts. Improper disposal can lead to secondary pollution, posing threats to the environment and human health. In this study, we aim to recycle waste epoxy resin and glass fiber-reinforced epoxy resin composites via an electroless plating and a carbonization process, to design high-value-added carbon materials for microwave absorption. By pulverizing solid waste and introducing magnetic metal nanoparticles onto its surface, a composite carbon material capable of excellent microwave absorption performance was successfully developed. Specifically, doping nickel particles into carbon materials derived from glass fiber/epoxy resin achieved a wide effective absorption bandwidth (EAB) of 5.9 GHz with a matching thickness of 1.9 mm, covering nearly the entire Ku band, and achieving a minimum reflection loss (RLmin) of −36 dB simultaneously. The superior absorption performance is attributed to multiple reflections or scattering of electromagnetic waves within the material, as well as conduction and magnetic losses, dipole and interfacial polarization effects. These results demonstrate that through rational design and optimization, waste epoxy and waste glass fiber-reinforced epoxy resin-based composite materials can be effectively recycled into high-performance microwave absorbing materials, offering a straightforward and efficient pathway for waste resource utilization.
中文翻译:
通过化学镀磁珠和碳化微波吸收回收玻璃纤维增强环氧树脂废料
塑料废弃物回收是当今可持续发展努力的重点。处置不当会导致二次污染,对环境和人类健康构成威胁。在本研究中,我们旨在通过化学镀和碳化工艺回收废弃环氧树脂和玻璃纤维增强环氧树脂复合材料,以设计用于微波吸收的高附加值碳材料。通过将固体废物粉碎并在其表面引入磁性金属纳米颗粒,成功开发了一种能够出色微波吸收性能的复合碳材料。具体来说,将镍颗粒掺杂到玻璃纤维/环氧树脂衍生的碳材料中,实现了 5.9 GHz 的宽有效吸收带宽 (EAB),匹配厚度为 1.9 mm,几乎覆盖了整个 Ku 波段,并同时实现了 -36 dB 的最小反射损耗 (RLmin)。卓越的吸收性能归因于材料内电磁波的多次反射或散射,以及传导和磁损耗、偶极子和界面极化效应。这些结果表明,通过合理的设计和优化,废环氧树脂和废玻璃纤维增强环氧树脂基复合材料可以有效地回收利用为高性能的微波吸收材料,为废旧资源化利用提供了一条简单高效的途径。
更新日期:2024-11-30
中文翻译:
通过化学镀磁珠和碳化微波吸收回收玻璃纤维增强环氧树脂废料
塑料废弃物回收是当今可持续发展努力的重点。处置不当会导致二次污染,对环境和人类健康构成威胁。在本研究中,我们旨在通过化学镀和碳化工艺回收废弃环氧树脂和玻璃纤维增强环氧树脂复合材料,以设计用于微波吸收的高附加值碳材料。通过将固体废物粉碎并在其表面引入磁性金属纳米颗粒,成功开发了一种能够出色微波吸收性能的复合碳材料。具体来说,将镍颗粒掺杂到玻璃纤维/环氧树脂衍生的碳材料中,实现了 5.9 GHz 的宽有效吸收带宽 (EAB),匹配厚度为 1.9 mm,几乎覆盖了整个 Ku 波段,并同时实现了 -36 dB 的最小反射损耗 (RLmin)。卓越的吸收性能归因于材料内电磁波的多次反射或散射,以及传导和磁损耗、偶极子和界面极化效应。这些结果表明,通过合理的设计和优化,废环氧树脂和废玻璃纤维增强环氧树脂基复合材料可以有效地回收利用为高性能的微波吸收材料,为废旧资源化利用提供了一条简单高效的途径。