当前位置:
X-MOL 学术
›
J. Materiomics
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
SnO2–SnS2/graphene heterojunction composite promotes high-performance sodium ion storage
Journal of Materiomics ( IF 8.4 ) Pub Date : 2024-11-30 , DOI: 10.1016/j.jmat.2024.100983 Yuanyuan Ma, Ke Ping, Peng Sun, Kaibin Lin, Junjie Guo, Lu Yue, Wenhui Zhang, Xiangwei Wu, Zhaoyin Wen
Journal of Materiomics ( IF 8.4 ) Pub Date : 2024-11-30 , DOI: 10.1016/j.jmat.2024.100983 Yuanyuan Ma, Ke Ping, Peng Sun, Kaibin Lin, Junjie Guo, Lu Yue, Wenhui Zhang, Xiangwei Wu, Zhaoyin Wen
The design of electrode material nanostructures including reducing material sizes and designing appropriate heterostructures, has great potential in improving charge storage dynamics and enhancing practical performance. In this study, we present the innovative synthesis of SnO2-SnS2/graphene heterojunction composite materials via a controlled vulcanization reaction process. The unique structure endows the composite with high electronic conductivity, rapid ion diffusion rates, elevated electrochemical activity, excellent structural stability, and abundant reaction sites, making it a highly efficient anode material for sodium-ion batteries (SIBs). Half-cell tests demonstrate that the SnO2–SnS2/r–G composite achieves a first Coulombic efficiency of 77.3% at a high current density of 5 A/g, showing remarkable cycling stability. Remarkably, the composite retains a reversible capacity of 330 mA·h/g after 1000 cycles, with a capacity retention rate of 77.5%. Moreover, we elucidate the specific sodium storage mechanisms of the heterojunction composite electrode via in-situ and ex-situ characterization methods. Furthermore, a full battery utilizing Na0.53MnO2 as the cathode and SnO2–SnS2/r–G composite as the anode exhibits outstanding rate performance and long-term cycling stability. This method of heterostructure design and fabrication, coupled with the exceptional performance metrics, suggests that the SnO2–SnS2/r–G heterostructure is a promising candidate for advanced anode materials in SIBs applications.
中文翻译:
SnO2–SnS2/石墨烯异质结复合材料促进高性能钠离子储存
电极材料纳米结构的设计,包括减小材料尺寸和设计合适的异质结构,在改善电荷存储动力学和增强实际性能方面具有巨大潜力。在本研究中,我们提出了通过受控硫化反应过程创新合成 SnO 2-SnS2/石墨烯异质结复合材料的方法。独特的结构使复合材料具有高电子导电性、快速离子扩散速率、高电化学活性、优异的结构稳定性和丰富的反应位点,使其成为钠离子电池 (SIB) 的高效负极材料。半电池测试表明,SnO2–SnS2/r-G 复合材料在 5 A/g 的高电流密度下实现了 77.3% 的第一库仑效率,表现出显着的循环稳定性。值得注意的是,该复合材料在 1000 次循环后仍保持 330 mA·h/g 的可逆容量,容量保持率为 77.5%。此外,我们通过原位和非原位表征方法阐明了异质结复合电极的特定储钠机制。此外,以Na 0.53MnO2 为阴极,以 SnO2–SnS2/r-G 复合材料为阳极的满电池表现出优异的倍率性能和长期循环稳定性。这种异质结构设计和制造方法,再加上卓越的性能指标,表明 SnO2–SnS2/r-G 异质结构是 SIB 应用中先进负极材料的有前途的候选者。
更新日期:2024-11-30
中文翻译:
SnO2–SnS2/石墨烯异质结复合材料促进高性能钠离子储存
电极材料纳米结构的设计,包括减小材料尺寸和设计合适的异质结构,在改善电荷存储动力学和增强实际性能方面具有巨大潜力。在本研究中,我们提出了通过受控硫化反应过程创新合成 SnO 2-SnS2/石墨烯异质结复合材料的方法。独特的结构使复合材料具有高电子导电性、快速离子扩散速率、高电化学活性、优异的结构稳定性和丰富的反应位点,使其成为钠离子电池 (SIB) 的高效负极材料。半电池测试表明,SnO2–SnS2/r-G 复合材料在 5 A/g 的高电流密度下实现了 77.3% 的第一库仑效率,表现出显着的循环稳定性。值得注意的是,该复合材料在 1000 次循环后仍保持 330 mA·h/g 的可逆容量,容量保持率为 77.5%。此外,我们通过原位和非原位表征方法阐明了异质结复合电极的特定储钠机制。此外,以Na 0.53MnO2 为阴极,以 SnO2–SnS2/r-G 复合材料为阳极的满电池表现出优异的倍率性能和长期循环稳定性。这种异质结构设计和制造方法,再加上卓越的性能指标,表明 SnO2–SnS2/r-G 异质结构是 SIB 应用中先进负极材料的有前途的候选者。