当前位置:
X-MOL 学术
›
Energy Environ. Sci.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Suppressing non-radiative recombination for efficient and stable perovskite solar cells
Energy & Environmental Science ( IF 32.4 ) Pub Date : 2024-11-29 , DOI: 10.1039/d4ee02917h Jiahua Tao, Chunhu Zhao, Zhaojin Wang, You Chen, Lele Zang, Guang Yang, Yang Bai, Junhao Chu
Energy & Environmental Science ( IF 32.4 ) Pub Date : 2024-11-29 , DOI: 10.1039/d4ee02917h Jiahua Tao, Chunhu Zhao, Zhaojin Wang, You Chen, Lele Zang, Guang Yang, Yang Bai, Junhao Chu
Perovskite solar cells (PSCs) have emerged as prominent contenders in photovoltaic technologies, reaching a certified efficiency of 26.7%. Nevertheless, the current record efficiency is still far below the theoretical Shockley–Queisser (SQ) limit due to the presence of non-radiative recombination losses. Here, we provide a comprehensive review exploring the fundamental mechanisms driving non-radiative recombination and the intricate dynamics of photocurrent hysteresis. The interconnectedness between these issues and their collective impact on the operational stability of PSCs, which is essential for practical application, is emphasized. Notable advancements in understanding and mitigating performance losses caused by non-radiative recombination in PSCs are thoroughly overviewed, including advanced passivation techniques, sophisticated interface engineering, precise compositional tuning, development of novel materials, and state-of-the-art fabrication methods. These innovative approaches are making significant progress in minimizing efficiency losses and further improving device stability. Moreover, this review identifies the ongoing challenges and outlines a strategic research agenda aimed at harnessing the full potential of PSCs. To achieve the theoretical maximum efficiency defined by the SQ limit, this agenda sets a visionary goal for PSCs to transition from laboratory breakthroughs to widespread commercial reality. Such advancements could revolutionize the global energy landscape, underscoring the critical importance of continued innovation and development in this rapidly progressing field.
中文翻译:
抑制非辐射复合,实现高效稳定的钙钛矿太阳能电池
钙钛矿太阳能电池 (PSC) 已成为光伏技术领域的重要竞争者,认证效率达到 26.7%。尽管如此,由于存在非辐射复合损耗,目前的创纪录效率仍远低于理论上的 Shockley-Queisser (SQ) 极限。在这里,我们进行了全面的综述,探讨了驱动非辐射复合的基本机制和光电流磁滞的复杂动力学。强调了这些问题之间的相互关联性及其对 PSC 运行稳定性的集体影响,这对于实际应用至关重要。全面概述了在理解和减轻 PSC 中非辐射复合引起的性能损失方面的显着进展,包括先进的钝化技术、复杂的界面工程、精确的成分调整、新型材料的开发和最先进的制造方法。这些创新方法在最大限度地减少效率损失和进一步提高器件稳定性方面取得了重大进展。此外,本综述确定了持续的挑战,并概述了旨在充分利用 PSC 潜力的战略研究议程。为了实现 SQ 限值定义的理论最大效率,该议程为 PSC 设定了一个富有远见的目标,即从实验室突破过渡到广泛的商业现实。这些进步可能会彻底改变全球能源格局,凸显在这个快速发展的领域中持续创新和发展的至关重要性。
更新日期:2024-11-29
中文翻译:
抑制非辐射复合,实现高效稳定的钙钛矿太阳能电池
钙钛矿太阳能电池 (PSC) 已成为光伏技术领域的重要竞争者,认证效率达到 26.7%。尽管如此,由于存在非辐射复合损耗,目前的创纪录效率仍远低于理论上的 Shockley-Queisser (SQ) 极限。在这里,我们进行了全面的综述,探讨了驱动非辐射复合的基本机制和光电流磁滞的复杂动力学。强调了这些问题之间的相互关联性及其对 PSC 运行稳定性的集体影响,这对于实际应用至关重要。全面概述了在理解和减轻 PSC 中非辐射复合引起的性能损失方面的显着进展,包括先进的钝化技术、复杂的界面工程、精确的成分调整、新型材料的开发和最先进的制造方法。这些创新方法在最大限度地减少效率损失和进一步提高器件稳定性方面取得了重大进展。此外,本综述确定了持续的挑战,并概述了旨在充分利用 PSC 潜力的战略研究议程。为了实现 SQ 限值定义的理论最大效率,该议程为 PSC 设定了一个富有远见的目标,即从实验室突破过渡到广泛的商业现实。这些进步可能会彻底改变全球能源格局,凸显在这个快速发展的领域中持续创新和发展的至关重要性。