当前位置: X-MOL 学术J. Hepatol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Utility of AI digital pathology as an aid for pathologists scoring fibrosis in MASH
Journal of Hepatology ( IF 26.8 ) Pub Date : 2024-11-28 , DOI: 10.1016/j.jhep.2024.11.032
Desiree Abdurrachim, Serene Lek, Charlene Zhi Lin Ong, Chun Kit Wong, Yongqi Zhou, Aileen Wee, Gwyneth Soon, Timothy J. Kendall, Michael O. Idowu, Christopher Hendra, Ashmita Saigal, Radha Krishnan, Elaine Chng, Dean Tai, Gideon Ho, Thomas Forest, Annaswamy Raji, Saswata Talukdar, Chih-Liang Chin, Richard Baumgartner, Samuel S. Engel, Asad Abu Bakar Ali, David E. Kleiner, Arun J. Sanyal

Intra and inter-pathologist variability poses a significant challenge in metabolic dysfunction-associated steatohepatitis (MASH) biopsy evaluation, leading to suboptimal selection of patients and confounded assessment of histological response in clinical trials. We evaluated the utility of an artificial intelligence (AI) digital pathology (DP) platform to help pathologists improve the reliability of fibrosis staging.

中文翻译:


AI 数字病理学作为病理学家在 MASH 中对纤维化评分的辅助工具



病理学家内部和病理学家间的变异性对代谢功能障碍相关脂肪性肝炎 (MASH) 活检评估构成了重大挑战,导致患者选择不理想,并在临床试验中混淆了组织学反应的评估。我们评估了人工智能 (AI) 数字病理学 (DP) 平台的效用,以帮助病理学家提高纤维化分期的可靠性。
更新日期:2024-11-28
down
wechat
bug