当前位置:
X-MOL 学术
›
Inorg. Chem. Front.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Microwave-assisted fabrication of a self-supported graphene-based high-entropy alloy electrode for efficient and stable electrocatalytic nitrate reduction to ammonia
Inorganic Chemistry Frontiers ( IF 6.1 ) Pub Date : 2024-11-28 , DOI: 10.1039/d4qi02881c Yun Ling, Qingyun Feng, Xuan Zheng, Hui Su, Yuanyuan Zhang, Zehua Zou, Aifen Liu, Yang Huang, Jing Tang, Yi Li, Maosheng Zhang, Qingxiang Wang
Inorganic Chemistry Frontiers ( IF 6.1 ) Pub Date : 2024-11-28 , DOI: 10.1039/d4qi02881c Yun Ling, Qingyun Feng, Xuan Zheng, Hui Su, Yuanyuan Zhang, Zehua Zou, Aifen Liu, Yang Huang, Jing Tang, Yi Li, Maosheng Zhang, Qingxiang Wang
Direct electrochemical nitrate reduction to ammonia (NRA) synthesis is an efficient and environmentally friendly production technology. However, the development of highly selective electrocatalysts is still a challenge due to the nine-proton and eight-electron reduction reaction. High-entropy alloys (HEAs) contain a wide range of elements and have adjustable properties, giving them excellent application potential in multi-step reactions. In this work, we skillfully use the local high temperature and excellent thermal conductivity generated at the reduced graphene oxide (rGO) defect in a microwave process to achieve a rapid quenching process in 10 seconds. This approach overcomes element immiscibility and results in a self-supported, single-phase, non-precious metal and uniform FeCoNiCuSn alloy electrode. The HEAs reach a remarkable NH3 yield of 883.7 ± 11.2 μg h−1 cm−2, maximum faradaic efficiency (FE) of 94.5 ± 1.4%, and highest NH3 selectivity of 90.4 ± 2.7%. Experimental and theoretical calculations reveal that the presence of multiple adjacent elements in HEAs triggers a synergistic catalytic effect, while the excellent mass and charge transfer properties of rGO jointly encourage the performance of the electrochemical NRA. In particular, NO3− favors vertical adsorption at Fe–Fe sites, and the desorption of NH3 is identified as the rate-determining step (RDS) with an extremely small ΔG value of 0.7 eV.
中文翻译:
微波辅助制备自支撑石墨烯基高熵合金电极,用于高效、稳定的电催化硝酸盐还原成氨
直接电化学硝酸盐还原制氨 (NRA) 合成是一种高效且环保的生产技术。然而,由于九质子和八电子还原反应,高选择性电催化剂的开发仍然是一个挑战。高熵合金 (HEA) 包含多种元素并具有可调节的性能,使其在多步反应中具有出色的应用潜力。在这项工作中,我们巧妙地利用微波工艺中还原氧化石墨烯 (rGO) 缺陷处产生的局部高温和优异的热导率,实现了 10 秒的快速淬火过程。这种方法克服了元件的不混溶性,并产生了自支撑、单相、非贵金属和均匀的 FeCoNiCuSn 合金电极。高熵离子剂达到了 883.7 ± 11.2 μg h-1 cm-2 的显著 NH3 产量,最大法拉第效率 (FE) 为 94.5 ± 1.4%,最高 NH3 选择性为 90.4 ± 2.7%。实验和理论计算表明,高熵合金中多种相邻元素的存在会触发协同催化效应,而 rGO 优异的质量和电荷转移特性共同促进了电化学 NRA 的性能。特别是,NO3− 有利于 Fe-Fe 位点的垂直吸附,NH3 的解吸被确定为速率决定步骤 (RDS),具有 0.7 eV 的极小 ΔG 值。
更新日期:2024-11-28
中文翻译:
微波辅助制备自支撑石墨烯基高熵合金电极,用于高效、稳定的电催化硝酸盐还原成氨
直接电化学硝酸盐还原制氨 (NRA) 合成是一种高效且环保的生产技术。然而,由于九质子和八电子还原反应,高选择性电催化剂的开发仍然是一个挑战。高熵合金 (HEA) 包含多种元素并具有可调节的性能,使其在多步反应中具有出色的应用潜力。在这项工作中,我们巧妙地利用微波工艺中还原氧化石墨烯 (rGO) 缺陷处产生的局部高温和优异的热导率,实现了 10 秒的快速淬火过程。这种方法克服了元件的不混溶性,并产生了自支撑、单相、非贵金属和均匀的 FeCoNiCuSn 合金电极。高熵离子剂达到了 883.7 ± 11.2 μg h-1 cm-2 的显著 NH3 产量,最大法拉第效率 (FE) 为 94.5 ± 1.4%,最高 NH3 选择性为 90.4 ± 2.7%。实验和理论计算表明,高熵合金中多种相邻元素的存在会触发协同催化效应,而 rGO 优异的质量和电荷转移特性共同促进了电化学 NRA 的性能。特别是,NO3− 有利于 Fe-Fe 位点的垂直吸附,NH3 的解吸被确定为速率决定步骤 (RDS),具有 0.7 eV 的极小 ΔG 值。