当前位置:
X-MOL 学术
›
Energy Environ. Sci.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Stepwise MXene and MOF conversion assisted ultrathin dual-carbon-protected V2O3 nanosheets for ultrafast and durable Zn-ion storage
Energy & Environmental Science ( IF 32.4 ) Pub Date : 2024-11-28 , DOI: 10.1039/d4ee04387a Xiaolin Ma, Ke Han, Hongxing Li, Lulu Song, Yuan Lin, Liangxu Lin, Yang Liu, Yi Zhao, Zhen Yang, Wei Huang
Energy & Environmental Science ( IF 32.4 ) Pub Date : 2024-11-28 , DOI: 10.1039/d4ee04387a Xiaolin Ma, Ke Han, Hongxing Li, Lulu Song, Yuan Lin, Liangxu Lin, Yang Liu, Yi Zhao, Zhen Yang, Wei Huang
Vanadium oxides with high theoretical capacity are attractive cathodes for aqueous zinc-ion batteries (AZIBs), while their practical usage is still obstructed by the vanadium dissolution, structure deterioration, and sluggish reaction kinetics during cycles. Herein, ultrathin dual-carbon-protected V2O3 nanosheets are developed to tackle these issues through stepwise MXene and MOF conversion. As-designed C@V2O3@C nanosheets exhibit structural merits of large surface area, porous structure, small size, high V2O3 content, and ultrathin inner/outer dual-carbon matrix. For Zn-ion storage, these structural advantages endow a C@V2O3@C cathode with good capacity retention of ∼100% at 1 A g−1 and excellent cycling performance over 3000 cycles. Remarkably, it manifests an exceptional rate capability of 402 mA h g−1 at 50 A g−1, outperforming most reported cathode materials for AZIBs. Combined in/ex situ experiments and theoretical calculation further illuminate the reaction mechanism of V2O3 with initial activation process and subsequent reversible H+/Zn2+ co-insertion/extraction reactions, along with the effect of carbon matrix on the superior performance by suppressing V dissolution, enhancing the structural stability, improving the pseudocapacitive behavior, and boosting the electron/ion transportation ability of the vanadium oxide cathode. As a proof of concept, as-assembled flexible ZIBs with excellent battery performance can be integrated into a self-powered sensor system for human motion monitoring, highlighting the potential application of the C@V2O3@C cathode for wearable electronics.
中文翻译:
逐步 MXene 和 MOF 转换辅助超薄双碳保护 V2O3 纳米片,用于超快和耐用的 Zn-ion 存储
具有高理论容量的钒氧化物是水性锌离子电池 (AZIB) 的有吸引力的阴极,但其实际应用仍受到钒溶解、结构恶化和循环过程中反应动力学缓慢的阻碍。在此,开发了超薄双碳保护 V2O3 纳米片,通过逐步 MXene 和 MOF 转换来解决这些问题。设计C@V2O3@C 纳米片具有表面积大、多孔结构、体积小、V2O3 含量高、内/外双碳基体等结构优点。对于锌离子存储,这些结构优势赋予了C@V2O3@C 阴极在 1 A g-1 时 ∼100% 的良好容量保持率,并在 3000 次循环中具有出色的循环性能。值得注意的是,它在 50 A g-1 时表现出 402 mA h g-1 的出色倍率能力,优于大多数已报道的 AZIB 阴极材料。结合原位/非原位实验和理论计算进一步阐明了 V2O3 与初始活化过程和随后可逆的 H+/Zn2+ 共插入/萃取反应的反应机理,以及碳基体通过抑制 V 溶解、增强结构稳定性、改善伪电容行为等对优异性能的影响。提高氧化钒阴极的电子/离子传输能力。 作为概念验证,具有出色电池性能的组装后柔性 ZIB 可以集成到用于人体运动监测的自供电传感器系统中,突出了 C@V2O3@C 阴极在可穿戴电子设备中的潜在应用。
更新日期:2024-11-28
中文翻译:
逐步 MXene 和 MOF 转换辅助超薄双碳保护 V2O3 纳米片,用于超快和耐用的 Zn-ion 存储
具有高理论容量的钒氧化物是水性锌离子电池 (AZIB) 的有吸引力的阴极,但其实际应用仍受到钒溶解、结构恶化和循环过程中反应动力学缓慢的阻碍。在此,开发了超薄双碳保护 V2O3 纳米片,通过逐步 MXene 和 MOF 转换来解决这些问题。设计C@V2O3@C 纳米片具有表面积大、多孔结构、体积小、V2O3 含量高、内/外双碳基体等结构优点。对于锌离子存储,这些结构优势赋予了C@V2O3@C 阴极在 1 A g-1 时 ∼100% 的良好容量保持率,并在 3000 次循环中具有出色的循环性能。值得注意的是,它在 50 A g-1 时表现出 402 mA h g-1 的出色倍率能力,优于大多数已报道的 AZIB 阴极材料。结合原位/非原位实验和理论计算进一步阐明了 V2O3 与初始活化过程和随后可逆的 H+/Zn2+ 共插入/萃取反应的反应机理,以及碳基体通过抑制 V 溶解、增强结构稳定性、改善伪电容行为等对优异性能的影响。提高氧化钒阴极的电子/离子传输能力。 作为概念验证,具有出色电池性能的组装后柔性 ZIB 可以集成到用于人体运动监测的自供电传感器系统中,突出了 C@V2O3@C 阴极在可穿戴电子设备中的潜在应用。