Nature Energy ( IF 49.7 ) Pub Date : 2024-11-28 , DOI: 10.1038/s41560-024-01679-4 Yang Lu, Qingbin Cao, Weili Zhang, Tianyou Zeng, Yu Ou, Shuaishuai Yan, Hao Liu, Xuan Song, Haiyu Zhou, Wenhui Hou, Pan Zhou, Nan Hu, Qingqing Feng, Yong Li, Kai Liu
|
Lithium metal batteries operating under extreme conditions are limited by the sluggish desolvation process and poor stability of the electrode–electrolyte interphase. However, rational interphase design is hindered by the ill-defined understanding of interphasial chemistry at the molecular level. Here we design and synthesize a series of sulfoximide salts, lithium bis(trifluoromethanesulfinyl)imide (LiBSTFSI) and lithium (trifluoromethanesulfinyl)(trifluoromethanesulfonyl)imide (LiSTFSI), that possess distinctive oxidizability. Their molecular structure and interphasial chemistry were correlated. An anionic electro-polymerization was induced by the asymmetric LiSTFSI to establish a bilayer catholde–electrolyte interphase (CEI) with LiF dominated inner covered by negative-charged inorganic polymers. LiSTFSI-derived CEI enables superior mechanical stability and accelerated Li+ desolvation that contribute to the stable cycling and superior energy and power densities under ultra-high rate and ultra-low temperature conditions. Industrial pouch cells of 474 Wh kg−1 achieved extreme power density of 5,080 W kg−1 at 30 °C and exceptional low-temperature energy and power densities at −20 °C (382 Wh kg−1, 3,590 W kg−1) and −40 °C (321 Wh kg−1, 1,517 W kg−1).
中文翻译:

打破高性能锂金属电池在极端循环条件下的磺酰亚胺阴离子的分子对称性
在极端条件下运行的锂金属电池受到缓慢的脱溶剂化过程和电极-电解质界面稳定性差的限制。然而,合理的界面设计受到分子水平上对相间化学的定义不清的阻碍。在这里,我们设计并合成了一系列亚砜酰亚胺盐,双(三氟甲烷亚磺酰基)酰亚胺锂 (LiBSTFSI) 和锂(三氟甲烷亚磺酰基)(三氟甲磺酰基)酰亚胺 (LiSTFSI),它们具有独特的氧化性。它们的分子结构和相间化学是相关的。不对称的 LiSTFSI 诱导阴离子电聚合,以建立双层 catholde-electrolyte 界面 (CEI),其中 LiF 以带负电荷的无机聚合物为主。LiSTFSI 衍生的 CEI 可实现卓越的机械稳定性和加速的 Li+ 脱溶剂化,有助于在超高倍率和超低温条件下实现稳定的循环和卓越的能量和功率密度。474 Wh kg-1 的工业软包电池在 30 °C 时实现了 5,080 W kg-1 的极端功率密度,并在 -20 °C(382 Wh kg-1、3,590 W kg-1)和 -40 °C(321 Wh kg-1、1,517 W kg-1)下实现了出色的低温能量和功率密度。