当前位置:
X-MOL 学术
›
Comput. Math. Appl.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
The simplified weak Galerkin method with θ scheme and its reduced-order model for the elastodynamic problem on polygonal mesh
Computers & Mathematics with Applications ( IF 2.9 ) Pub Date : 2024-11-25 , DOI: 10.1016/j.camwa.2024.11.023 Lu Wang, Minfu Feng
Computers & Mathematics with Applications ( IF 2.9 ) Pub Date : 2024-11-25 , DOI: 10.1016/j.camwa.2024.11.023 Lu Wang, Minfu Feng
This paper presents a simplified weak Galerkin (SWG) method for solving the elastodynamic problem and its reduced-order model (ROM) using the proper orthogonal decomposition (POD) technique. The SWG method allows for the use of polygonal meshes. It only utilizes degrees of freedom associated with the boundary, reducing computational complexity compared to the classical weak Galerkin method. Moreover, we apply the POD technique to develop a POD-SWG-ROM for the problem, further enhancing the computational efficiency. Then, to discretize in time, we utilize a θ -scheme, where the scheme is explicit when 0 ≤ θ < 1 / 4 and implicit when 1 / 4 ≤ θ ≤ 1 / 2 . We establish the theoretical analysis of the semi-discrete scheme and the fully-discrete θ scheme. The theoretical analysis demonstrates that the method is locking-free, and the convergence rate in the H 1 and L 2 norms is O ( Δ t 2 + h 1 ) and O ( Δ t 2 + h 2 ) respectively. Finally, we verify the theoretical analysis through numerical tests and effectively simulate the propagation of elastic waves under polygonal meshes. Moreover, the proposed POD-SWG-ROM can significantly improve computational efficiency.
中文翻译:
具有 θ 方案的简化弱 Galerkin 方法及其多边形网格上弹性动力学问题的降阶模型
本文提出了一种简化的弱伽辽金 (SWG) 方法,用于解决弹性动力学问题及其降阶模型 (ROM),使用适当的正交分解 (POD) 技术。SWG 方法允许使用多边形网格。它只利用与边界相关的自由度,与经典的弱 Galerkin 方法相比,它降低了计算复杂性。此外,我们应用 POD 技术为该问题开发了 POD-SWG-ROM,进一步提高了计算效率。然后,为了在时间上离散,我们使用 θ 方案,其中该方案在 0≤θ<1/4 时是显式的,在 1/4≤θ≤1/2 时是隐式的。我们建立了半离散方案和全离散 θ 方案的理论分析。理论分析表明,该方法无锁,在 H1 和 L2 范数中的收敛速率分别为 O(Δt2+h1) 和 O(Δt2+h2)。最后,通过数值测试验证了理论分析,并有效地模拟了多边形网格下弹性波的传播。此外,所提出的 POD-SWG-ROM 可以显著提高计算效率。
更新日期:2024-11-25
中文翻译:
具有 θ 方案的简化弱 Galerkin 方法及其多边形网格上弹性动力学问题的降阶模型
本文提出了一种简化的弱伽辽金 (SWG) 方法,用于解决弹性动力学问题及其降阶模型 (ROM),使用适当的正交分解 (POD) 技术。SWG 方法允许使用多边形网格。它只利用与边界相关的自由度,与经典的弱 Galerkin 方法相比,它降低了计算复杂性。此外,我们应用 POD 技术为该问题开发了 POD-SWG-ROM,进一步提高了计算效率。然后,为了在时间上离散,我们使用 θ 方案,其中该方案在 0≤θ<1/4 时是显式的,在 1/4≤θ≤1/2 时是隐式的。我们建立了半离散方案和全离散 θ 方案的理论分析。理论分析表明,该方法无锁,在 H1 和 L2 范数中的收敛速率分别为 O(Δt2+h1) 和 O(Δt2+h2)。最后,通过数值测试验证了理论分析,并有效地模拟了多边形网格下弹性波的传播。此外,所提出的 POD-SWG-ROM 可以显著提高计算效率。