当前位置: X-MOL 学术Quantum › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Constructing quantum codes from any classical code and their embedding in ground space of local Hamiltonians
Quantum ( IF 5.1 ) Pub Date : 2024-11-27 , DOI: 10.22331/q-2024-11-27-1541
Ramis Movassagh, Yingkai Ouyang

Implementing robust quantum error correction (QEC) is imperative for harnessing the promise of quantum technologies. We introduce a framework that takes $any$ classical code and explicitly constructs the corresponding QEC code. Our framework can be seen to generalize the CSS codes, and goes beyond the stabilizer formalism (Fig. 1). A concrete advantage is that the desirable properties of a classical code are automatically incorporated in the design of the resulting quantum code. We reify the theory by various illustrations some of which outperform the best previous constructions. We then introduce a local quantum spin-chain Hamiltonian whose ground space we analytically completely characterize. We utilize our framework to demonstrate that the ground space contains explicit quantum codes with linear distance. This side-steps the Bravyi-Terhal no-go theorem.

中文翻译:


从任何经典代码构造量子代码,并将其嵌入到局部哈密顿量的地面空间中



实施强大的量子纠错 (QEC) 对于利用量子技术的前景至关重要。我们引入了一个框架,该框架采用 $any$ 经典代码并显式构造相应的 QEC 代码。可以看出,我们的框架概括了 CSS 代码,并超越了稳定器形式主义(图 1)。一个具体的优势是,经典代码的理想属性会自动合并到生成的量子代码的设计中。我们通过各种插图来具体化该理论,其中一些插图的性能优于以前最好的结构。然后,我们引入了一个局部量子自旋链哈密顿量,我们分析地完全描述了它的基空间。我们利用我们的框架来证明地面空间包含具有线性距离的显式量子代码。这回避了 Bravyi-Terhal 不通过定理。
更新日期:2024-11-27
down
wechat
bug