当前位置: X-MOL 学术Joule › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A key advance toward practical aqueous Zn/MnO2 batteries via better electrolyte design
Joule ( IF 38.6 ) Pub Date : 2024-11-27 , DOI: 10.1016/j.joule.2024.11.001
Ivette Aguilar, John Brown, Louis Godeffroy, Florian Dorchies, Véronique Balland, Frédéric Kanoufi, Jean-Marie Tarascon

Rechargeable aqueous devices, such as alkaline Zn/MnO2 batteries, hold strong potential for large-scale energy storage. However, they face limitations related to zinc and electrolyte degradation. Here, in the spirit of practicality, we have addressed these limitations by developing strategies aiming at resolving issues with the electrolyte, anode, and cathode independently at first, and then in synergy. We propose innovative electrolyte designs that incorporate select organic molecules to leverage hydrogen bonding interactions, reducing Zn nuclei reactivity via the formation of a stable solid electrolyte interphase (SEI). Our optimized Zn/MnO2 batteries demonstrate high stability, achieving a gravimetric capacity of ∼450 mAh/g (MnO2) and 90% capacity retention. Furthermore, we systematically show the scalability of our methods, moving from a Swagelok cell prototype (3–6 mg/cm2 of mass loading) to cylindrical-type cell (30 mg/cm2). These batteries can operate at unprecedentedly high temperatures of up to 55°C, while offering an energy density of 150 Wh/kg.

中文翻译:


通过更好的电解质设计实现实用的 Zn/MnO2 水系电池的重要进展



可充电水性器件,如碱性 Zn/MnO2 电池,在大规模储能方面具有很大的潜力。然而,它们面临着与锌和电解质降解相关的限制。在这里,本着实用的精神,我们通过制定策略来解决这些限制,这些策略首先独立解决电解质、阳极和阴极的问题,然后协同解决。我们提出了创新的电解质设计,这些设计结合了选定的有机分子来利用氢键相互作用,通过形成稳定的固体电解质界面 (SEI) 来降低 Zn 核反应性。我们优化的 Zn/MnO2 电池表现出高稳定性,可实现 ∼450 mAh/g (MnO2) 的重量容量和 90% 的容量保持率。此外,我们系统地展示了我们方法的可扩展性,从世伟洛克单元原型(3-6 mg/cm2 的质量负载)转变为圆柱形单元(30 mg/cm2)。这些电池可以在高达 55°C 的前所未有的高温下运行,同时提供 150 Wh/kg 的能量密度。
更新日期:2024-11-27
down
wechat
bug