当前位置:
X-MOL 学术
›
Inorg. Chem. Front.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
MOF nanozymes: active sites and sensing applications
Inorganic Chemistry Frontiers ( IF 6.1 ) Pub Date : 2024-11-27 , DOI: 10.1039/d4qi02555e Ziyan Zhang, Yujie Li, Zhishuang Yuan, Lingxia Wu, Jiping Ma, Weiqiang Tan, Yingjie Sun, Guangyao Zhang, Huining Chai
Inorganic Chemistry Frontiers ( IF 6.1 ) Pub Date : 2024-11-27 , DOI: 10.1039/d4qi02555e Ziyan Zhang, Yujie Li, Zhishuang Yuan, Lingxia Wu, Jiping Ma, Weiqiang Tan, Yingjie Sun, Guangyao Zhang, Huining Chai
Metal–organic frameworks (MOFs) are porous organic–inorganic coordination materials with numerous active sites, enabling them to mimic the properties of natural enzymes and making them highly promising for sensing applications. This review provides a detailed overview of recent advancements in leveraging MOFs for the design of catalytic active sites in nanozymes. MOFs utilize metal ions and organic ligands as active centers for biomimetic catalysis, while their porous frameworks efficiently bind and stabilize multiple guest active units. Furthermore, MOFs can undergo chemical transformations to produce derivatives such as porous carbon materials and nanostructured metal compounds, enhancing their catalytic performance and broadening their applications as nanozymes. This review also explores the progress of MOF-based nanozymes across various catalytic modes in analytical sensing, highlighting their ability to significantly improve detection sensitivity, selectivity, and range. Additionally, the critical role of diverse active sites in sensing processes is emphasized, with attention to the design and synthesis strategies required to optimize the performance of MOF nanozymes. Finally, the review discusses future prospects for the development of MOF nanozymes and outlines key challenges that must be addressed to advance this field.
中文翻译:
MOF 纳米酶:活性位点和传感应用
金属-有机框架 (MOF) 是多孔有机-无机配位材料,具有许多活性位点,使它们能够模拟天然酶的特性,使其在传感应用中极具前景。本文详细概述了利用 MOF 设计纳米酶中催化活性位点的最新进展。MOF 利用金属离子和有机配体作为仿生催化的活性中心,而它们的多孔框架有效地结合和稳定多个客体活性单元。此外,MOF 可以进行化学转化以产生衍生物,例如多孔碳材料和纳米结构金属化合物,从而提高其催化性能并拓宽其作为纳米酶的应用。本文还探讨了基于 MOF 的纳米酶在分析传感中各种催化模式的进展,强调了它们显著提高检测灵敏度、选择性和范围的能力。此外,强调了不同活性位点在传感过程中的关键作用,并关注优化 MOF 纳米酶性能所需的设计和合成策略。最后,综述讨论了 MOF 纳米酶发展的未来前景,并概述了推动该领域发展必须解决的关键挑战。
更新日期:2024-12-02
中文翻译:
MOF 纳米酶:活性位点和传感应用
金属-有机框架 (MOF) 是多孔有机-无机配位材料,具有许多活性位点,使它们能够模拟天然酶的特性,使其在传感应用中极具前景。本文详细概述了利用 MOF 设计纳米酶中催化活性位点的最新进展。MOF 利用金属离子和有机配体作为仿生催化的活性中心,而它们的多孔框架有效地结合和稳定多个客体活性单元。此外,MOF 可以进行化学转化以产生衍生物,例如多孔碳材料和纳米结构金属化合物,从而提高其催化性能并拓宽其作为纳米酶的应用。本文还探讨了基于 MOF 的纳米酶在分析传感中各种催化模式的进展,强调了它们显著提高检测灵敏度、选择性和范围的能力。此外,强调了不同活性位点在传感过程中的关键作用,并关注优化 MOF 纳米酶性能所需的设计和合成策略。最后,综述讨论了 MOF 纳米酶发展的未来前景,并概述了推动该领域发展必须解决的关键挑战。