Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Transparent TiO2/MoO3 Heterojunction-Based Photovoltaic Self-Powered Triethylamine Gas Sensor with IoT-Enabled Smartphone Interface
ACS Sensors ( IF 8.2 ) Pub Date : 2024-11-26 , DOI: 10.1021/acssensors.4c02110 Rahul Suresh Ghuge, Sreelakshmi Madhavanunni Rekha, Hajeesh Kumar Vikraman, Surya Velappa Jayaraman, Mangalampalli S R N Kiran, S Venkataprasad Bhat, Yuvaraj Sivalingam
ACS Sensors ( IF 8.2 ) Pub Date : 2024-11-26 , DOI: 10.1021/acssensors.4c02110 Rahul Suresh Ghuge, Sreelakshmi Madhavanunni Rekha, Hajeesh Kumar Vikraman, Surya Velappa Jayaraman, Mangalampalli S R N Kiran, S Venkataprasad Bhat, Yuvaraj Sivalingam
Conventional gas sensors encounter a significant obstacle in terms of power consumption, making them unsuitable for integration with the next generation of smartphones, wireless platforms, and the Internet of Things (IoT). Energy-efficient gas sensors, particularly self-powered gas sensors, can effectively tackle this problem. The researchers are making significant strides in advancing photovoltaic self-powered gas sensors by employing diverse materials and their compositions. Unfortunately, several of these sensors seem complex in fabrication and mainly target oxidizing species detection. To address these issues, we have successfully employed a transparent, cost-efficient solution processed bilayer TiO2/MoO3 heterojunction-based photovoltaic self-powered gas sensor with superior VOC sensing capabilities, marking a significant milestone in this field. The scanning Kelvin probe (SKP) measurement reveals the remarkable change in contact potential difference (−23 mV/kPa) of the TiO2/MoO3 bilayered film after UV light exposure in a triethylamine (TEA) atmosphere, indicating the highest reactivity between TEA molecules and TiO2/MoO3. Under photovoltaic mode, the sensor further demonstrates exceptional sensitivity (∼2.35 × 10–3 ppm–1) to TEA compared to other studied VOCs, with an admirable limit of detection (22 ppm) and signal-to-noise ratio (1540). Additionally, the sensor shows the ability to recognize TEA and estimate its composition in a binary mixture of VOCs from a similar class. The strongest affinity of TiO2/MoO3 toward the TEA molecule, the lowest covalent bond energy, and the highest electron-donating nature of TEA may be mainly attributed to the highest adsorption between TiO2/MoO3 and TEA. We further demonstrate the practical applicability of the TEA sensor with a prototype device connected to a smartphone via the IoT, enabling continuous surveillance of TEA.
中文翻译:
基于透明 TiO2/MoO3 异质结的光伏自供电三乙胺气体传感器,具有支持物联网的智能手机界面
传统的气体传感器在功耗方面遇到了重大障碍,因此不适合与下一代智能手机、无线平台和物联网 (IoT) 集成。节能型气体传感器,尤其是自供电式气体传感器,可以有效解决这个问题。研究人员通过采用多种材料及其成分,在推进光伏自供电气体传感器方面取得了重大进展。不幸的是,其中一些传感器的制造似乎很复杂,主要针对氧化物质检测。为了解决这些问题,我们成功采用了一种透明、经济高效的解决方案处理双层 TiO2/MoO3 异质结基光伏自供电气体传感器,具有卓越的 VOC 传感能力,标志着该领域的一个重要里程碑。扫描开尔文探针 (SKP) 测量显示,在三乙胺 (TEA) 气氛中暴露于紫外光后,TiO2/MoO3 双层薄膜的接触电位差 (−23 mV/kPa) 发生了显着变化,表明 TEA 分子与 TiO2/MoO3 之间的反应性最高。在光伏模式下,与其他研究的 VOC 相比,该传感器进一步表现出对 TEA 的出色灵敏度 (∼2.35 × 10–3 ppm–1),具有令人钦佩的检测限 (22 ppm) 和信噪比 (1540)。此外,该传感器还能够识别 TEA 并估计其在同类 VOC 二元混合物中的成分。 TiO2/MoO3 对 TEA 分子的亲和力最强,共价键能最低,TEA 的供电子性最高,这可能主要归因于 TiO2/MoO3 与 TEA 之间的最高吸附。我们进一步证明了 TEA 传感器的实际适用性,即通过物联网连接到智能手机的原型设备,从而能够对 TEA 进行持续监控。
更新日期:2024-11-27
中文翻译:
基于透明 TiO2/MoO3 异质结的光伏自供电三乙胺气体传感器,具有支持物联网的智能手机界面
传统的气体传感器在功耗方面遇到了重大障碍,因此不适合与下一代智能手机、无线平台和物联网 (IoT) 集成。节能型气体传感器,尤其是自供电式气体传感器,可以有效解决这个问题。研究人员通过采用多种材料及其成分,在推进光伏自供电气体传感器方面取得了重大进展。不幸的是,其中一些传感器的制造似乎很复杂,主要针对氧化物质检测。为了解决这些问题,我们成功采用了一种透明、经济高效的解决方案处理双层 TiO2/MoO3 异质结基光伏自供电气体传感器,具有卓越的 VOC 传感能力,标志着该领域的一个重要里程碑。扫描开尔文探针 (SKP) 测量显示,在三乙胺 (TEA) 气氛中暴露于紫外光后,TiO2/MoO3 双层薄膜的接触电位差 (−23 mV/kPa) 发生了显着变化,表明 TEA 分子与 TiO2/MoO3 之间的反应性最高。在光伏模式下,与其他研究的 VOC 相比,该传感器进一步表现出对 TEA 的出色灵敏度 (∼2.35 × 10–3 ppm–1),具有令人钦佩的检测限 (22 ppm) 和信噪比 (1540)。此外,该传感器还能够识别 TEA 并估计其在同类 VOC 二元混合物中的成分。 TiO2/MoO3 对 TEA 分子的亲和力最强,共价键能最低,TEA 的供电子性最高,这可能主要归因于 TiO2/MoO3 与 TEA 之间的最高吸附。我们进一步证明了 TEA 传感器的实际适用性,即通过物联网连接到智能手机的原型设备,从而能够对 TEA 进行持续监控。