当前位置:
X-MOL 学术
›
Energy Environ. Sci.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
A dynamically assembled bionic ion pump interface towards high-rate and stable-cycling zinc metal batteries
Energy & Environmental Science ( IF 32.4 ) Pub Date : 2024-11-26 , DOI: 10.1039/d4ee05028b Xiaoyun Xu, Songmei Li, Junwei An, Zicheng Luo, Juan Du, Jinyan Zhong, Mei Yu, Shubin Yang, Bin Li
Energy & Environmental Science ( IF 32.4 ) Pub Date : 2024-11-26 , DOI: 10.1039/d4ee05028b Xiaoyun Xu, Songmei Li, Junwei An, Zicheng Luo, Juan Du, Jinyan Zhong, Mei Yu, Shubin Yang, Bin Li
The application of a Zn metal anode in aqueous zinc metal batteries (AZMBs) is limited by an unstable interface, which induces well-known dendrite growth and corrosion. In this report, a bionic ion pump interface for a Zn metal anode is proposed and constructed by dynamically assembling acetylated protein (α-HPace) (Zn@BIPI/α-HPace). The α-HPace with abundant amide bonds is preferentially assembled on the fresh Zn metal surface as an interface, due to its strong recognition of Zn2+. It is demonstrated by TOF-SIMS that the organic –CONH– and inorganic ZnF2/ZnS make up the uniformly dispersed section of the interface film, playing the roles of Zn2+ transport sites and a dense barrier layer, respectively. Thus, the bionic ion pump interface is not only beneficial for the rapid transport of Zn2+ but also effective in preventing aqueous electrolyte erosion. More importantly, the Zn@BIPI/α-HPace anode achieves uniform deposition with a predominant orientation of 91% (100) planes. The improved results show that a symmetric cell with a Zn@BIPI/α-HPace electrode achieves a long cycle life of over 6000 h, and a full cell with a Zn@BIPI/α-HPace anode and NaV3O8-1.5H2O cathode exhibits a high-capacity retention of ∼92% after 5000 cycles at 5 A g−1. This study, in which bionic ion-pump interface engineering is achieved, provides a novel approach to facilitate the practical application of AZMBs.
中文翻译:
一种动态组装的仿生离子泵接口,适用于高倍率和稳定循环的锌金属电池
锌金属负极在水性锌金属电池 (AZMB) 中的应用受到不稳定界面的限制,这会导致众所周知的枝晶生长和腐蚀。在本报告中,通过动态组装乙酰化蛋白 (α-HPace) (Zn@BIPI/α-HPace) 提出了和构建了用于 Zn 金属负极的仿生离子泵接口。具有丰富酰胺键的 α-HPace 由于对 Zn2+ 的强烈识别,因此优先作为界面组装在新 Zn 金属表面上。TOF-SIMS 证明有机 –CONH– 和无机 ZnF2/ZnS 构成了界面膜的均匀分散部分,分别扮演 Zn2+ 传输位点和致密阻挡层的作用。因此,仿生离子泵界面不仅有利于 Zn2+ 的快速传输,而且可有效防止电解质水溶液的侵蚀。更重要的是,Zn@BIPI/α-HPace 阳极实现了均匀沉积,主要取向为 91% (100) 个平面。改进的结果表明,具有 Zn@BIPI/α-HPace 电极的对称电池实现了超过 6000 h 的长循环寿命,而具有 Zn@BIPI/α-HPace 阳极和 NaV3O 8-1.5H 2O 阴极的全电池在 5 A g-1 下循环 5000 次后表现出 ∼92% 的高容量保持率.本研究实现了仿生离子泵界面工程,为促进 AZMBs 的实际应用提供了一种新的方法。
更新日期:2024-11-26
中文翻译:
一种动态组装的仿生离子泵接口,适用于高倍率和稳定循环的锌金属电池
锌金属负极在水性锌金属电池 (AZMB) 中的应用受到不稳定界面的限制,这会导致众所周知的枝晶生长和腐蚀。在本报告中,通过动态组装乙酰化蛋白 (α-HPace) (Zn@BIPI/α-HPace) 提出了和构建了用于 Zn 金属负极的仿生离子泵接口。具有丰富酰胺键的 α-HPace 由于对 Zn2+ 的强烈识别,因此优先作为界面组装在新 Zn 金属表面上。TOF-SIMS 证明有机 –CONH– 和无机 ZnF2/ZnS 构成了界面膜的均匀分散部分,分别扮演 Zn2+ 传输位点和致密阻挡层的作用。因此,仿生离子泵界面不仅有利于 Zn2+ 的快速传输,而且可有效防止电解质水溶液的侵蚀。更重要的是,Zn@BIPI/α-HPace 阳极实现了均匀沉积,主要取向为 91% (100) 个平面。改进的结果表明,具有 Zn@BIPI/α-HPace 电极的对称电池实现了超过 6000 h 的长循环寿命,而具有 Zn@BIPI/α-HPace 阳极和 NaV3O 8-1.5H 2O 阴极的全电池在 5 A g-1 下循环 5000 次后表现出 ∼92% 的高容量保持率.本研究实现了仿生离子泵界面工程,为促进 AZMBs 的实际应用提供了一种新的方法。