当前位置: X-MOL 学术Appl. Phys. Rev. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
(Ultra)wide bandgap semiconductor heterostructures for electronics cooling
Applied Physics Reviews ( IF 11.9 ) Pub Date : 2024-11-25 , DOI: 10.1063/5.0185305
Zhe Cheng, Zifeng Huang, Jinchi Sun, Jia Wang, Tianli Feng, Kazuki Ohnishi, Jianbo Liang, Hiroshi Amano, Ru Huang

The evolution of power and radiofrequency electronics enters a new era with (ultra)wide bandgap semiconductors such as GaN, SiC, and β-Ga2O3, driving significant advancements across various technologies. The elevated breakdown voltage and minimal on-resistance result in size-compact and energy-efficient devices. However, effective thermal management poses a critical challenge, particularly when pushing devices to operate at their electronic limits for maximum output power. To address these thermal hurdles, comprehensive studies into thermal conduction within semiconductor heterostructures are essential. This review offers a comprehensive overview of recent progress in (ultra)wide bandgap semiconductor heterostructures dedicated to electronics cooling and are structured into four sections. Part 1 summarizes the material growth and thermal properties of (ultra)wide bandgap semiconductor heterostructures. Part 2 discusses heterogeneous integration techniques and thermal boundary conductance (TBC) of the bonded interfaces. Part 3 focuses on the research of TBC, including the progress in thermal characterization, experimental and theoretical enhancement, and the fundamental understanding of TBC. Parts 4 shifts the focus to electronic devices, presenting research on the cooling effects of these heterostructures through simulations and experiments. Finally, this review also identifies objectives, challenges, and potential avenues for future research. It aims to drive progress in electronics cooling through novel materials development, innovative integration techniques, new device designs, and advanced thermal characterization. Addressing these challenges and fostering continued progress hold the promise of realizing high-performance, high output power, and highly reliable electronics operating at the electronic limits.

中文翻译:


用于电子冷却的(超)宽带隙半导体异质结构



功率和射频电子技术的发展进入了一个新时代,GaN、SiC 和 β-Ga2O3 等(超)宽带隙半导体推动了各种技术的重大进步。较高的击穿电压和最小的导通电阻使器件尺寸紧凑且节能。然而,有效的热管理带来了关键挑战,尤其是在推动设备在其电子极限下运行以实现最大输出功率时。为了解决这些热障碍,对半导体异质结构内的热传导进行全面研究至关重要。这篇综述全面概述了专用于电子冷却的(超)宽带隙半导体异质结构的最新进展,分为四个部分。第 1 部分总结了(超)宽禁带半导体异质结构的材料生长和热特性。第 2 部分讨论了异构集成技术和键合界面的热边界传导 (TBC)。第 3 部分侧重于 TBC 的研究,包括热表征、实验和理论增强的进展以及对 TBC 的基本理解。第 4 部分将重点转移到电子设备上,通过模拟和实验介绍了这些异质结构的冷却效应的研究。最后,本综述还确定了未来研究的目标、挑战和潜在途径。它旨在通过新型材料开发、创新集成技术、新器件设计和先进的热特性来推动电子冷却的进步。 应对这些挑战并促进持续进步有望实现在电子极限下运行的高性能、高输出功率和高度可靠的电子设备。
更新日期:2024-11-25
down
wechat
bug