当前位置:
X-MOL 学术
›
Ind. Eng. Chem. Res.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
CFD Simulation and Analysis of LOHC Dehydrogenation Furnace and Reactor Configurations
Industrial & Engineering Chemistry Research ( IF 3.8 ) Pub Date : 2024-11-25 , DOI: 10.1021/acs.iecr.4c03173 Nihal Rao, Ashwin W Patwardhan
Industrial & Engineering Chemistry Research ( IF 3.8 ) Pub Date : 2024-11-25 , DOI: 10.1021/acs.iecr.4c03173 Nihal Rao, Ashwin W Patwardhan
The LOHC dehydrogenation furnace and reactor are simulated in the present work to produce 10 N m3/h of hydrogen. Two reactor configurations are considered for the LOHC dehydrogenation system–helical and U-tube coil configuration. The furnace model is validated by comparing model predictions with the steam-cracking furnace simulation from Habibi et al. (Impact of Radiation Models in CFD Simulations of Steam Cracking Furnaces. Comput Chem Eng 2007, 31 (11), 1389–1406. https://doi.org/10.1016/j.compchemeng.2006.11.009.). The flue gas temperature distribution, velocity, heat flux, and wall temperature within the furnace are determined by solving the mass, momentum, and energy equations through simulations conducted in Ansys Fluent software. The wall temperature obtained from the CFD simulation is used as an input for the 1D model of the dehydrogenation reactor to obtain the process side temperature and perhydro dibenzyltoluene (PDBT) conversion along the reactor length for both configurations. The reactor is designed to achieve more than 99% conversion of perhydro dibenzyl toluene. The wall temperature along the reactor length varies linearly from 660 to 807 K for the helical coil configuration, whereas the wall temperature for the U-tube configuration varies sinusoidally along the reactor length between 670 and 817 K. Additionally, the high wall temperature reduces the length required for the helical and U-tube coil configurations to achieve 99% conversion, compared to the constant wall temperature conditions reported in previous literature (Rao et al., Optimization of Liquid Organic Hydrogen Carrier (LOHC) Dehydrogenation System. Int J Hydrogen Energy 2022, 47 (66), 28530–28547. https://doi.org/10.1016/j.ijhydene.2022.06.197). The helical coil configuration also demonstrates slightly higher thermal efficiency across various conversions compared to the U-tube configuration, offering valuable insights for designing efficient LOHC dehydrogenation systems.
中文翻译:
LOHC 脱氢炉和反应器配置的 CFD 仿真和分析
在本工作中模拟了 LOHC 脱氢炉和反应器,以产生 10 N m3/h 的氢气。LOHC 脱氢系统考虑了两种反应器配置——螺旋和 U 型管盘管配置。通过将模型预测与 Habibi 等人的蒸汽裂解炉模拟进行比较来验证熔炉模型(辐射模型在蒸汽裂解炉 CFD 模拟中的影响。计算化学工程2007, 31 (11), 1389–1406。https://doi.org/10.1016/j.compchemeng.2006.11.009.)。通过在 Ansys Fluent 软件中进行的仿真求解质量、动量和能量方程,确定炉内烟气温度分布、速度、热通量和壁温。从 CFD 仿真获得的壁温用作脱氢反应器一维模型的输入,以获得两种配置的工艺侧温度和沿反应器长度的全氢二苄基甲苯 (PDBT) 转化率。该反应器旨在实现全氢二苄基甲苯的 99% 以上的转化率。对于螺旋线圈配置,沿反应器长度的壁温在 660 至 807 K 之间线性变化,而 U 型管配置的壁温沿反应器长度在 670 至 817 K 之间呈正弦变化。此外,高壁温减少了螺旋和 U 型管盘管配置所需的长度,以实现 99% 的转化率。 与以前文献中报道的恒定壁温条件相比(Rao 等人,液态有机氢载体 (LOHC) 脱氢系统的优化。国际氢能杂志2022, 47 (66), 28530–28547。 https://doi.org/10.1016/j.ijhydene.2022.06.197)。与 U 型管配置相比,螺旋盘管配置在各种转换中也表现出略高的热效率,为设计高效的 LOHC 脱氢系统提供了宝贵的见解。
更新日期:2024-11-26
中文翻译:
LOHC 脱氢炉和反应器配置的 CFD 仿真和分析
在本工作中模拟了 LOHC 脱氢炉和反应器,以产生 10 N m3/h 的氢气。LOHC 脱氢系统考虑了两种反应器配置——螺旋和 U 型管盘管配置。通过将模型预测与 Habibi 等人的蒸汽裂解炉模拟进行比较来验证熔炉模型(辐射模型在蒸汽裂解炉 CFD 模拟中的影响。计算化学工程2007, 31 (11), 1389–1406。https://doi.org/10.1016/j.compchemeng.2006.11.009.)。通过在 Ansys Fluent 软件中进行的仿真求解质量、动量和能量方程,确定炉内烟气温度分布、速度、热通量和壁温。从 CFD 仿真获得的壁温用作脱氢反应器一维模型的输入,以获得两种配置的工艺侧温度和沿反应器长度的全氢二苄基甲苯 (PDBT) 转化率。该反应器旨在实现全氢二苄基甲苯的 99% 以上的转化率。对于螺旋线圈配置,沿反应器长度的壁温在 660 至 807 K 之间线性变化,而 U 型管配置的壁温沿反应器长度在 670 至 817 K 之间呈正弦变化。此外,高壁温减少了螺旋和 U 型管盘管配置所需的长度,以实现 99% 的转化率。 与以前文献中报道的恒定壁温条件相比(Rao 等人,液态有机氢载体 (LOHC) 脱氢系统的优化。国际氢能杂志2022, 47 (66), 28530–28547。 https://doi.org/10.1016/j.ijhydene.2022.06.197)。与 U 型管配置相比,螺旋盘管配置在各种转换中也表现出略高的热效率,为设计高效的 LOHC 脱氢系统提供了宝贵的见解。