Foundations of Computational Mathematics ( IF 2.5 ) Pub Date : 2024-11-25 , DOI: 10.1007/s10208-024-09674-7 Théophile Chaumont-Frelet, Martin Vohralík
We analyze constrained and unconstrained minimization problems on patches of tetrahedra sharing a common vertex with discontinuous piecewise polynomial data of degree p. We show that the discrete minimizers in the spaces of piecewise polynomials of degree p conforming in the \(H^1\), \({\varvec{H}}(\textbf{curl})\), or \({\varvec{H}}({\text {div}})\) spaces are as good as the minimizers in these entire (infinite-dimensional) Sobolev spaces, up to a constant that is independent of p. These results are useful in the analysis and design of finite element methods, namely for devising stable local commuting projectors and establishing local-best–global-best equivalences in a priori analysis and in the context of a posteriori error estimation. Unconstrained minimization in \(H^1\) and constrained minimization in \({\varvec{H}}({\text {div}})\) have been previously treated in the literature. Along with improvement of the results in the \(H^1\) and \({\varvec{H}}({\text {div}})\) cases, our key contribution is the treatment of the \({\varvec{H}}(\textbf{curl})\) framework. This enables us to cover the whole de Rham diagram in three space dimensions in a single setting.
中文翻译:
de Rham 复合体中顶点块中 p 鲁棒局部重建的约束和无约束稳定离散最小化
我们分析了与次数为 p 的不连续分段多项式数据共享公共顶点的四面体块上的约束和无约束最小化问题。我们表明,在符合 \(H^1\)、\({\varvec{H}}(\textbf{curl})\) 或 \({\varvec{H}}({\text {div}})\) 空间的 p 次分段多项式空间中的离散最小化器与这些整个(无限维)Sobolev 空间中的最小化器一样好,直到一个独立于 p 的常数.这些结果在有限元方法的分析和设计中很有用,即用于设计稳定的局部通勤投影仪,并在先验分析和后验误差估计的背景下建立局部最佳-全局-最佳等价。\(H^1\) 中的无约束最小化和 \({\varvec{H}}({\text {div}})\) 中的约束最小化之前在文献中已经讨论过。除了 \(H^1\) 和 \({\varvec{H}}({\text {div}})\) 情况下结果的改进外,我们的主要贡献是处理 \({\varvec{H}}(\textbf{curl})\) 框架。这使我们能够在单个设置中覆盖三个空间维度的整个 de Rham 图。