npj Quantum Materials ( IF 5.4 ) Pub Date : 2024-11-25 , DOI: 10.1038/s41535-024-00707-6 Andrew C. Yuan, Steven A. Kivelson
Josephson tunneling across a planar junction generally depends on the relative twist angle, θ, between the two layers. However, if under a discrete rotation, the order parameter in one layer is odd and the other is even (as, e.g., for a s-wave to \({d}_{{x}^{2}-{y}^{2}}\)-wave junction under a π/2 rotation) then the bulk Josephson current vanishes for all θ. Even in this case, we show that for a finite junction, the Josephson current, J, has a nonzero edge contribution that depends on θ and the orientation of the junction edges in ways that can serve as an unambiguous probe of the order parameter symmetry of any time-reversal preserving system (including multiband systems and those in which spin-orbit coupling is significant). We also analyze the microscopic considerations that determine the magnitude of J.
中文翻译:
来自平面 Josephson 结点的相位敏感信息
穿过平面结的 Josephson 隧穿通常取决于两层之间的相对扭曲角 θ。然而,如果在离散旋转下,一层中的阶次参数是奇数,另一层是偶数(例如,在 π/2 旋转下,对于 \({d}_{{x}^{2}-{y}^{2}}\) 波结的 s 波),那么本体约瑟夫森电流对于所有 θ 都消失了。即使在这种情况下,我们也表明,对于有限结点,约瑟夫森电流 J 具有非零边贡献,该贡献取决于 θ 和结边的方向,其方式可以作为任何时间反转守恒系统(包括多频带系统和自旋轨道耦合很重要的系统)的阶次参数对称性的明确探针。我们还分析了决定 J 大小的微观因素。