当前位置:
X-MOL 学术
›
Engineering
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Innovative Inverse-Design Approach for On-Chip Computational Spectrometers: Enhanced Performance and Reliability
Engineering ( IF 10.1 ) Pub Date : 2024-07-26 , DOI: 10.1016/j.eng.2024.07.011 Ang Li, Yifan Wu, Gongyuan Zhang, Chang Wang, Jijun He, Yaqi Shi, Zongyin Yang, Shilong Pan
Engineering ( IF 10.1 ) Pub Date : 2024-07-26 , DOI: 10.1016/j.eng.2024.07.011 Ang Li, Yifan Wu, Gongyuan Zhang, Chang Wang, Jijun He, Yaqi Shi, Zongyin Yang, Shilong Pan
Computational spectrometers utilizing disordered structures have emerged as promising solutions for meeting the imperative demand for integrated spectrometers, offering high performance and improved resilience to fabrication variations and temperature fluctuations. However, the current computational spectrometers are impractical because they rely on a brute-force random design approach for disordered structures. This leads to an uncontrollable, non-reproducible, and suboptimal spectrometer performance. In this study, we revolutionize the existing paradigm by introducing a novel inverse design approach for computational spectrometers. By harnessing the power of inverse design, which has traditionally been applied to optimize single devices with simple performance, we successfully adapted it to optimize a complex system comprising multiple correlated components with intricate spectral responses. This approach can be applied to a wide range of structures. We validated this by realizing a spectrometer utilizing a new type of disordered structure based on interferometric effects that exhibits negligible loss and high sensitivity. For a given structure, our approach yielded a remarkable 12-times improvement in the spectral resolution and a four-fold reduction in the cross-correlation between the filters. The resulting spectrometer demonstrated reliable and reproducible performance with the precise determination of structural parameters.
中文翻译:
片上计算光谱仪的创新逆向设计方法:增强的性能和可靠性
利用无序结构的计算光谱仪已成为满足对集成光谱仪迫切需求的有前途的解决方案,可提供高性能并提高对制造变化和温度波动的弹性。然而,当前的计算光谱仪是不切实际的,因为它们依赖于无序结构的蛮力随机设计方法。这会导致光谱仪性能不可控、不可重现且次优。在这项研究中,我们通过引入一种新颖的计算光谱仪逆向设计方法,彻底改变了现有的范式。通过利用逆向设计的力量(传统上用于优化具有简单性能的单个器件),我们成功地对其进行了调整,以优化由具有复杂光谱响应的多个相关组件组成的复杂系统。这种方法可以应用于广泛的结构。我们通过实现一种利用基于干涉效应的新型无序结构的光谱仪来验证这一点,该光谱仪表现出可忽略不计的损耗和高灵敏度。对于给定的结构,我们的方法使光谱分辨率显著提高了 12 倍,滤波器之间的互相关降低了 4 倍。所得光谱仪在精确测定结构参数方面表现出可靠且可重复的性能。
更新日期:2024-07-26
中文翻译:
片上计算光谱仪的创新逆向设计方法:增强的性能和可靠性
利用无序结构的计算光谱仪已成为满足对集成光谱仪迫切需求的有前途的解决方案,可提供高性能并提高对制造变化和温度波动的弹性。然而,当前的计算光谱仪是不切实际的,因为它们依赖于无序结构的蛮力随机设计方法。这会导致光谱仪性能不可控、不可重现且次优。在这项研究中,我们通过引入一种新颖的计算光谱仪逆向设计方法,彻底改变了现有的范式。通过利用逆向设计的力量(传统上用于优化具有简单性能的单个器件),我们成功地对其进行了调整,以优化由具有复杂光谱响应的多个相关组件组成的复杂系统。这种方法可以应用于广泛的结构。我们通过实现一种利用基于干涉效应的新型无序结构的光谱仪来验证这一点,该光谱仪表现出可忽略不计的损耗和高灵敏度。对于给定的结构,我们的方法使光谱分辨率显著提高了 12 倍,滤波器之间的互相关降低了 4 倍。所得光谱仪在精确测定结构参数方面表现出可靠且可重复的性能。